
OpenPit

OpenPiton FPGA Prototype Manual

Wentzlaff Parallel Research Group

Princeton University

openpiton@princeton.edu

Version 3.0

Revision History

Revision Date Author(s)Description

1.0 06/30/15 AL Initial version
2.0 2/29/16 AL Added support VC707,

Genesys2 and NexysVideo
development boards

2.1 4/2/16 MM,AL SD boot image generation.
Porting to another boards.
Debugging and Simulation.

2.5 10/19/16 AL Described UART DMW. Re-
moved BRAM OBP. New lo-
cation of FPGA specific files.

3.0 3/22/17 KL, AL Added details on network
support and updated figures
according to new chipset de-
sign. Updated boards’ fre-
quencies. Decribed oled,
port options for tools.

3.1 6/9/17 JB Simplified ramdisk gener-
ation to remove bespoke
script. Added recommenda-
tion to use our images rather
than creating a new one.

ii

Contents

1 Preface 1

1.1 Notation Conventions 1

1.2 Supported Tools and Environment Set Up 1

1.2.1 SW Requirements 1

1.2.2 HW Requirements 3

1.2.3 Job Queue Managers 3

2 Introduction 4

3 Prototype Architecture 5

3.1 Top Level Architecture 5

3.2 IO_CTRL_TOP Architecture 6

3.3 IO_XBAR Overview 7

4 Mapping of a Processor to FPGA 10

4.1 Mapping of Processor’s SRAMs 11

4.2 Mapping of Main Memory 11

4.2.1 Using on-Board DDR3 Memory 12

4.2.2 Memory Emulation With on-FPGA BRAMs 12

4.2.3 Memory Emulation With SD Card 13

5 Design Configurations and Tools 14

5.1 Prototype Project Defines 14

5.2 Prototype Configurations 15

5.3 Running Implementation for Supported Develop-
ment Boards . 16

5.4 Memory Address Spaces for Different Prototype
Configurations . 17

iii

6 Prototype Operation 19

6.1 Reset Sequence 19

6.2 Loading Assembly Tests from PC to DDR 19

6.3 Assembly Test Execution 20

6.4 Booting OS from an SD Card 20

7 Simulation and Debugging 22

7.1 Software Simulation from Vivado 22

7.2 Inserting Debug Cores for Logic Analyzer 22

8 Description and Structure of Prototype Specific
Files and Scripts 24

8.1 Source Files and Scripts 24

8.1.1 Synthesis and Implementation Files 24

8.2 Generated Files 25

9 Networking 26

9.1 Interrupts . 26

9.2 Bringing up the network interface 26

A protosyn manpage 27

B pitonstream manpage 29

C pitonunimap manpage 30

D .ustr file format 31

E Porting OpenPiton Prototype to a Custom Devel-
opment Board 32

F Step-by-Step Instructions for Booting Debian
Linux and Playing Tetris 36

iv

G Generating an SD-Bootable Image 39

G.1 Building a Ramdisk from Scratch 39

G.1.1 Initialization 39

G.1.2 Mounting and Filling the Disk 40

G.2 Modifying an Existing Ramdisk 42

G.3 Creating an SD Image 43

References 44

v

List of Figures

1 Top level prototype architecture with the default
configuration of I/O devices. FPGA pins are
shown as green rectangles and are connected to
logical signals at system module. 5

2 Memory blocks and their sizes inside an Open-
Piton tile . 12

3 $MODEL_DIR directory structure 38

4 Genesys2 board running Tetris on full stack De-
bian Linux . 38

vi

List of Tables

1 Notation conventions 1

2 Supported development boards and their parameters 4

3 Suggested prototype configurations (OS_SD,
BRAM_TEST and UART_DMW DDR) with in-
frastructure blocks included into them 16

4 Steps of protosyn run for some of its options . . 17

vii

Example Description
$DV_ROOT/tools/src/proto Italic text is used to indicate

paths to scripts and folders
source add_files.tcl Courier font is used for com-

mands, scripts’ names, IP core
names and file names

NEXYSVIDEO_BOARD Text in all capital COURIER font
is used for defines

Tcl Console Capitalized text is used for
menu options

Note: Any text in bold is used to
highlight a special topic or par-
ticular option

Table 1: Notation conventions

1 Preface

1.1 Notation Conventions

Text conventions used in the manual are specified in Table 1.

1.2 Supported Tools and Environment Set Up

1.2.1 SW Requirements

• In order to be able to run scripts, $DV_ROOT and
$MODEL_DIR environment variables should be defined.
They can be set by moving to the topmost directory of
OpenPiton framework folder, and executing the following
commands:

export PITON_ROOT=$PWD
source piton/piton_settings.bash

• To be able to run FPGA implementation of OpenPiton
FPGA prototype, Xilinx Vivado tool should be installed
on a development machine. For this release Vivado 2015.4
version has been tested and is supported. You can check
Vivado version by running
vivado -version

1

• For loading tests from a PC through UART on FPGA the
next requirements should be met:

1. Python used on PC should have pyserial library in-
stalled.

2. Depending on the OS used, it could be required
to recompile configsrch script (sources located in
$DV_ROOT/tools/src/proto/configsrch). Run
make; make install
to compile and install configsrch for your system.
In addition to the above step, you could have to in-
stall required Perl packages used by the tools. In
Ubuntu you can run perlpkg.sh script located in
$DV_ROOT/tools/src/proto to do this. For other
systems, list of additional packages can be taken from
the script and installed according to the system.

3. Support for 32-bit programs should be enabled and
libraries should be installed. On Ubuntu, run the
next commands:
dpkg –add-architecture i386
apt-get update
apt-get install libc6:i386 libncurses5:i386
libstdc++6:i386
apt-get clean && apt-get update && apt-get
upgrade
apt-get install -f

4. Install the 32-bit version of gmp. On Ubuntu run:
wget http://mirrors.kernel.org/ubuntu/pool/universe/
g/gmp4/libgmp3c2_4.3.2+dfsg-2ubuntu1_i386.deb;
dpkg -i libgmp3c2_4.3.2+dfsg-2ubuntu1_i386.deb

All the above steps can be run on Ubuntu using
$DV_ROOT/tools/src/proto/syscfg.sh script. This script
can also be used as a reference for other OSes.

• Current implementation of processor memory on BRAMs
implies that some tests should be run in SW simulator
first. The Synopsys VCS program has to be installed (see
Simulation Manual Section 2.5.2 Verilog Simulator for more
details).

2

1.2.2 HW Requirements

You need one of the supported development boards listed in Ta-
ble 2. If configuration implies the use of an SD card, you will
need one to boot. SDSC cards and SDHC/SDXC cards no larger
than 32GB are supported.

1.2.3 Job Queue Managers

SLURM (Simple Linux Utility for Resource Management) is op-
tional protosyn script supports using it via --slurm command
option. Currently, SLURM version 15.08.8 has been tested with.

3

Development Board,
FPGA name,
Part Number

Core Clock
(1 core)

Max
#

Cores

DDR type,
Size,

Data width
Xilinx VC707

Virtex-7
XC7VX485T-2FFG1761C

60 MHz 3
DDR3
1GB
64 bits

Digilent Genesys2
Kintex-7

XC7K325T-2FFG900C
66.667 MHz 2

DDR3
1GB
32 bits

Digilent NexysVideo
Artix-7

XC7A200T-1SBG484C
30 MHz 1

DDR3
512MB
16 bits

Table 2: Supported development boards and their parameters

2 Introduction

High speed and relatively low price of FPGAs make them the
most common choice for hardware/software interface verification
of a processor design. However, design bring-up time, limited ca-
pacity of logic cells and width of external interfaces can introduce
additional challenges during prototyping step of a project flow
[1].

In order to speed up prototyping of a processor and enable a
flexible framework for hardware/software interface verification,
the FPGA prototype for OpenPiton processor [2] is publicly re-
leased. It targets several development boards with Xilinx FP-
GAs. The release includes all scripts required to implement
OpenPiton from Verilog sources down to bit files to program
an FPGA. In addition, all the changes applied to a design to
enable FPGA synthesis are described, so it can be easily ported
to other development boards and FPGAs.

Because of limited FPGA capacity at most three processor tiles
fit on one VC707 development board [3]. For all currently sup-
ported development boards, maximum number of cores fitting
on them, and core clock frequencies see Table 2.

4

Chip

Chipset

Packet
Filter I/O Crossbar

DRAM UART

SDETH

sd_*

M
D

IO net_phy_*

...

...

DDR
Interface ua

rt_
bo

ot
_e

n

pi
n_

rx
pi

n_
tx

System

CLK
MMCM

sy
s_

rs
t

cl
k_

n
cl

k_
p

Tile ...

Tile

Tile

Tile...
... ...

Figure 1: Top level prototype architecture with the default con-
figuration of I/O devices. FPGA pins are shown as green rect-
angles and are connected to logical signals at system module.

3 Prototype Architecture

3.1 Top Level Architecture

Top module of the FPGA prototype design is named system
(located in $DC_ROOT/design/rtl). As shown in Figure 1, it
can be divided into the chip and chipset logical blocks with
respective submodule names. In turn, chipset is composed out
of the next submodules:

• val_to_credit/credit_to_val modules - converts off-
chip val/rdy NOC interface to a credit based interface.
Since the original chip design has a credit based interface,
another converter from a credit based to val/rdy interface
is added for compatibility.

• io_xbar - configurable crossbar that routes NoC pack-
ets. I/O devices all have a port on the crossbar, and
the crossbar routes NoC packets to the appropriate de-
vice based on destination memory address. Configuration
for the io_xbar module is done using an XML file called

5

devices.xml. The configuration process is described in
more detail in Section 3.3

• packet_filter modules - configurable modules that mod-
ify NoC request packets. These modules are associated
with devices that send requests on the NoC. They look
at the destination memory address of a NoC request and
modify the destination port field, so it is routed appropri-
ately on the crossbar in the io_xbar module. Routing is
configured using the same devices.xml file as io_xbar.

• io_ctrl_top - top module for external IO controllers
(UART and SD card* by this moment).1.

• mc_top - top level module for the memory controller. Be-
cause of the application side of the MIG 7 IP core oper-
ates at a higher frequency than the chip and has a dif-
ferent interface from NOC’s val/rdy, asynchronous FIFOs
and packet transceivers are required. Width of DDR data
bus depends on a board type (see Table 2), so the memory
controller was designed to have a configurable application
data interface to MIG 7 IP core. As a result, the number
of cycles required to read/write one cache line varies from
board to board.

• clk_mmcm - Xilinx’s IP core for clock generation.

Pins shown in Figure 1 as green rectangles are self-explanatory.
The input pin uart_boot_en is connected to the last SW7 on
each FPGA board, which is used to control whether the system
should load a test through UART or boot Linux from the SD
card. Depending on the board type, clk_n/clk_p pin pair can
be a single ended clock or not.

3.2 IO_CTRL_TOP Architecture

IO_CTRL_TOP uses NOC1, NOC2 and NOC3 interfaces for
communication with the chip. It contains the interfaces for SD,
UART, and Ethernet. It also contains the uart_tx/uart_rx in-
terface to communicate with a host PC through UART and ad-
ditional control signals to check test completion conditions (not
shown). Its subblocks are described below:
1 The presence of an SD card controller depends on project configuration.
See Section 5.1

6

• ciop_iob - module which sends interrupts to cores through
NOC2. Among other interrupts, the module send a wake-
up packet to a core (see reset sequence in Section 6.1). This
module is also responsible for sending network interrupt
packets to the core when they are enabled

• noc_axilite_bridge, uart_top - bridge and top level
UART module. uart_top contains logic for processing the
bit stream from the PC when loading a test into DDR and
sends control sequences after each test completion.

• noc_axilite_bridge, mac_eth_axi_lite - bridge and
Ethernet Lite MAC IP core. There is also an external con-
verter from RGMII interface of the IP core to MII interface
of PHY chip on Genesys2 and NexysVideo boards.

• fake_boot_ctrl - module with a BRAM containing an as-
sembly test if protosyn was run with --bram-test option.

• piton_sd_top, sdc_controller - modules for the SD
controller and its interface.

3.3 IO_XBAR Overview

The I/O crossbar handles routing of NoC requests in the chipset.
All I/O devices and the chip are given a port on the crossbar.
Each device (and by extension) its port is associated with a range
of memory addresses. Devices connected to the crossbar that
send requests on the NoC are also given a packet filter, which
edits the destination port in the header flit, so the crossbar can
correctly route the packet to the right port. More information
about the header flits can be found in the microarchitecture man-
ual.

The crossbar ports, associated wires, and the packet filter logic
mapping memory addresses to ports are generated dynamically
based on an XML configuration file called devices.xml. Each
supported FPGA board has its own devices.xml file. An exam-
ple file is given in Listing 1 The tags used in this file and their
purpose are described here:

• port: This tag is used to indicate each distinct port on the
crossbar. This is the top-level tag for a device and each
device’s entry should be enclosed in port tags

• name: This tag is used to name the device associated with

7

a port. Wires and structures associated with the crossbar
are instantiated with this name. Each device must be given
a unique name.

• base: This tag is used to specify the base memory address
that should be associated with a device. This is used by the
packet filter in conjuction with the length tag for routing
logic.

• length: This tag is used to specify the size of the memory
region associated with a device. Coupled with the base ad-
ddress, this allows the packet filter to calculate the largest
memory address that should be associated with this device.
This information is used by the packet filter for routing
logic

• noc2in: This tag is optional. It should be used in the entry
for devices that want to send requests on the NoC and need
a packet filter. It has no value associated with it.

For an I/O device, all of these tags are required for a device entry
with the exception of the noc2in tag. The chip is an exception.
The chip must always have an entry and is always at port 0 on
the crossbar. It also does not require the base and length tags
although it always requires a noc2in tag.

Note The port assignment is not guaranteed to preserve the
order of the XML file. That is, the device associated with the
2nd set of port tags in the devices.xml is not guarenteed to be
associated with the second port on the crossbar. This is because
Python’s XML parsing library does not guarantee ordering. The
chip is always guarenteed to be at port 0 due to some extra
parsing.

The packet filter examines each request packet sent over the NoC.
It compares the destination memory address given in the header
flit with the memory ranges defined the base and length tags in
each entry in the devices.xml file. The packet filter will send it
to the first device it finds where the destination memory address
is within the device’s memory range.

Note It is undefined what happens if the memory regions for
two devices on the crossbar overlap, and the preprocessing does
not check that all memory regions are non-overlapping

To add a new devices, an entry has to be added to the

8

devices.xml file and the top-level module needs to be instan-
tiated in io_ctrl_top. Adding a new device involves adding a
new XML entry with the appropriate fields. This means spec-
ifying a name for it in the name tag and defining its memory
region and then instantiating the new device’s top level module
in io_ctrl_top. The device’s NoC ports should be passed the
appropriate wires.

9

4 Mapping of a Processor to FPGA

In order to port processor design on FPGA, its design should
be transformed to an identical synthesizable form for a chosen
FPGA. On top of that, infrastructure used for simulation should
be converted to a synthesizable format as well to allow running
of assembly tests and booting OS on a prototype. These changes
require removing and/or replacing all of the chip specific modules
(like RAMs, phy levels, etc.) with their equivalents supported
by FPGA tools.

The following IP blocks were created specifically for prototyping
OpenPiton:

• Block memories to emulate on-chip SRAMs

• Main Memory controller (MIG7 Xilinx IP core)

• Asynchronous FIFOs for inter-clock domain transfers

• Generator of system clocks

• UART16550 - serial interface for communication with host
PC

• MAC for communication with Ethernet PHY chip on
Genesys2 and NexysVideo boards

In addition to IP blocks, we designed infrastructure modules
which replace and/or extend capabilities of software simulation
infrastructure:

• Main Memory/IO and UART/BOOT splitters

• Converter between NOC interface and Memory controller
interface with configurable data width

• Converter between NOC interface and SD controller

• A wrapper around UART 16550 IP core for enabling Direct
Memory Writes from a host computer

• Multiplexers for choosing a master module for driving
Memory Controller

• Emulation of assembly test memory with BRAMs and cor-
responding controllers

• A wrapper around SD card controller

10

For a complete schematic of FPGA design see Figure 1. For
defines used to configure a project and provided scripts options
see Section 5.1.

4.1 Mapping of Processor’s SRAMs

OpenPiton has several on-chip SRAMs which are implemented
as register arrays for simulation. Some of these memories have
bit-enable write masks. Because of IP cores for Xilinx FPGA
BRAMs can have only byte-enable write mask, we designed
wrappers which implement bit-enable write mask functionality
on top of available BRAMs.

SRAMs which are implemented as block memories are shown on
Figure 2. All of them except a memory for L2 states (2p_256_176
on Figure 2) are simple dual port memories with one read and
one write port. For a write request we first read the content
of memory block, perform a bitwise operation based on a mask
and write data back to memory in the next cycle. Since original
SRAMs have only one port (with selection of operation type),
it guarantees that there is no read conflict when two memory
blocks are read at the same cycle. The only case which requires
a special attention is writing and reading of the same block in
two adjacent cycles. In this case for a read operation we have
to return a result after bitwise operation, not to read it from
memory (because of writes to a BRAM occur one cycle after a
request).

Original SRAM for L2 states is a simple dual-ported memory
with one port for read and one port for write requests. A wrap-
per used for it in FPGA design instantiates a true dual-ported
memory because in contrast to above case this memory can have
read conflicts. To enable bit-enable write mask the wrapper pads
incoming data and mask bits which always have the same mask
with zeros.

Memory wrappers for BRAMs are located in the
$DV_ROOT/design/proto directory.

4.2 Mapping of Main Memory

Simulation infrastructure for OpenPiton implements memory us-
ing Verilog PLI. Obviously, this solution can not be used for a
prototype because of if is not synthesizable.

11

frf: 128x80

hmt: 512x32L1.5

dtag: 128x160dcache: 512x128

dir: 1024x64

data: 4096x144

state: 2p_256x176

tag: 256x104

L2

TILECORE

Figure 2: Memory blocks
and their sizes inside an
OpenPiton tile

There are several options for memory
implementation, available for Open-
Piton FPGA protoype. Depend-
ing on design configuration, proces-
sor memory can be emulated with
on-board DDR memory, on-FPGA
BRAMS and SD card. For a list
of available configurations see Sec-
tion 5.2.

4.2.1 Using on-Board DDR3 Memory

All currently supported development
boards have DDR3 memory on it.
This allows us easily implement pro-
cessor main memory using Xilinx MIG 7 IP core [4].

4.2.2 Memory Emulation With on-FPGA BRAMs

Though DDR memory has large capacity, it requires a complex
controller, which uses on-FPGA logic elements. At the same time
most of assembly tests (as well as OpenBoot) are relatively short
(less than several MB), which makes them well suited for storing
them in BRAMs. This is a synthesizable option which allows
to create a self-contained FPGA design (without any additional
external I/O controller and storage).

In order to map a test to map a BRAM, it should be run on
a software simulator (using sims command) first to get a set of
addresses accessed by a test. The flow of mapping of an assembly
to a BRAM is described below:

• test.s is passed to sims through --bram-test option of
protosyn, which compiles it and creates mem.image file in
$MODEL_DIR directory

• after test finishes, sims.log is analyzed by
make_mem_map.py script. It extracts addresses ac-
cessed by a test and corresponding data read from
them2

2 Even if results of memory reads are printed in a cache line granularity (64
bytes), not the whole cache line can have valid data in a log file. Because
of that each address met in sims.log is checked in mem.image file to
make sure it is initialized. If there is a read of an uninitialized address,
make_mem_map.py script maps it to zero

12

• accessed memory addresses are aggregated into sections
and based on that a .coe (used to load data to a BRAM)
and storage_addr_trans.v. The latter one is used to map
physical addresses to BRAM addresses.

Refer to Section 5.1 for protosyn man page.

4.2.3 Memory Emulation With SD Card

SD card is a natural way to replace an CD drive for an FPGA.
If design is built with an SD controller, all memory requests to
I/O space except those with UART address (addr[39:13] ==
28’hfff0c2c) are forwarded to an SD controller. The SD card
works at 25MHz frequency.

13

5 Design Configurations and Tools

5.1 Prototype Project Defines

FPGA version of OpenPiton can be configured using next de-
fines:

• NO_SCAN* - define is used to remove logic responsible for
memory BIST and instantiating flip-flops without scan.
The presence of this define doesn’t allow to use a scan
chain.

• FPGA_SYN* - enables FPGA specific optimization for
SPARC core

• FPGA_SYN_1THREAD* - allows to synthesize a design with
one thread per core

• NO_USE_IBM_SRAMS* - forces to use memories suited for
FPGA synthesis

• PITON_PROTO* - enables OpenPiton specific optimization
for FPGA

• PITON_FULL_SYSTEM* - enables synthesis of both chip and
chipset on one FPGA

• PITONSYS_UART_BOOT - used to indicate that design should
be synthesized with support of UART controller responsi-
ble for communication with PC for loading test into DDR
memory

• PITON_NO_CHIP_BRIDGE* - removes chip bridge from the
chip, exposing chip interface as three credit based NoCs

• PITON_UART16550* - instantiates Xilinx’s UART16550 IP
core

• PITONSYS_NO_MC - indicates that design does not require
memory controller. This can be the case when the test is
stored in BRAM

• PITON_FPGA_SYNTH* - depricated from protosyn1,0

• PITON_FPGA_NO_DMBR - removes MITTS (former DMBR)
from a project [5]

• VC707_BOARD, GENESYS2_BOARD, NEXYSVIDEO_BOARD - used
to specify board type. Depending on this define single

14

ended or differential input clock for an FPGA and ac-
tive level of reset pin is selected, corresponding memory
interface is instantiated and respective instances names for
BRAMs are used. See
$DV_ROOT/verif/env/manycore/manycore_top.v.xlx.v,
$DV_ROOT/design/fpga/mc/rtl/mc_top.v,
$DV_ROOT/design/fpga/include/mc_define.h,
$DV_ROOT/design/proto/fpga_top.v
and memory wrappers (Section 4.1) source files for how
exactly these defines affect the design

• PITON_FPGA_MC_DDR3 - enables instantiation of memory
controller and interfaces for DDR3.

• PITON_FPGA_SD_BOOT - enables instantiation of an SD card
controller and necessary converters for NOC interface.

• PITON_FPGA_BRAM_TEST - enables instantiation of a BRAM
with a synthesized assembly test in it (see Section 4.2.2)
and memory mapping module for it. The define also affects
Memory/IO splitter (see Section 5.4).

• PITON_FPGA_BRAM_BOOT - enables instantiation of a BRAM
with Open Boot synthesized in it and memory mapping
module for it. Exclusive with PITON_FPGA_BRAM_TEST de-
fine. Should be used along with PITON_FPGA_MC_DDR3 de-
fine.

• PITON_FPGA_NO_FPU - removes FPU from a project. Note:
this module is required if you want to boot Linux.

• PITON_FPGA_ETHERNETLITE - enables networking on sup-
ported boards (see Section 9)

• OLED_STRING - defines a string to be displayed on OLED
display (Genesys2 and NexysVideo boards)

*Note: default defines used for a project

For complete set of defines which are set for each par-
ticular configuration by protosyn, refer to the source
$DV_ROOT/tools/src/proto/protosyn,2.5.

5.2 Prototype Configurations

As described in Section 3, chipset includes memory controller,
SD card controller, BRAM controllers, and UART16550 wrap-

15

OS + SD + Eth

(default)
BRAM_TEST

UART_DMW

to DDR

BRAM with test +
bram_map module X

UART/PC
interface X

DDR
Memory controller X X

SD card
controller X

UART 16550
wrapper X X X

Ethernet Lite
MAC X

Table 3: Suggested prototype configurations (OS_SD,
BRAM_TEST and UART_DMW DDR) with infrastructure
blocks included into them

per with control logic (see Figure 1). Using defines described
above, different configuration of OpenPiton prototype can be
created. Three most useful configurations are shown in Table 3
with modules included to each of them. The first and the last
column can be combined together, which allows to run assembly
tests or boot OS on using the same design. This can be selected
using SW7 on boards.

The main script for running all necessary preparation
steps and FPGA implementation for a targeted devel-
opment board is named protosyn and its source is
$DV_ROOT/tools/src/proto/protosyn,2.5. Its operation is ex-
plained in the next subsection.

5.3 Running Implementation for Supported Development Boards

The main script used for preparations and FPGA implementa-
tion of OpenPiton prototype is protosyn script. Its manpage
can be found in Appendix A. Major operations performed by
protosyn and their presence in the flow for different prototype
configurations are presented below.
protosyn consists of the next steps, listed in order of their exe-
cution:

• test run - compiles a simulation model of a chip and runs

16

sims test run test map project
creation impl

no extra options
(default) /
--uart-dmw

X X X

--bram-test <test> X X X X X
--make-mem-map
(with --bram-test) X X X

Table 4: Steps of protosyn run for some of its options

simulation of a specified test using sims script. For tests
which are using UART, protosyn passes and argument
specifying UART baud rate (board frequences are hard-
wired in the script)

• test map - creates a .coe file for BRAM synthesis from
mem.image and sims.log files (located in $MODEL_DIR)
and bram_mapmodule for mapping from physical to BRAM
addresses (see Section 4.2.2)

• project creation - preprocessing of .v.pyv/h.pyv files
and generatin of .tmp.v/.tmp.h using pyhp script (see
Simulation Manual). Creation Vivado project for a speci-
fied board*
NOTE: Overrides a previous project

• implementation - runs implementation for a targeted de-
velopment board down to bitstream generation

In the Table 4 shown which steps are run depending on extra
protosyn options.

5.4 Memory Address Spaces for Different Prototype Configurations

During software simulation of a chip, where memory is imple-
mented using Verilog PLI, all requests are directed at the same
place. However, for a prototype, final destination of a request
is defined by the configuration of the IO_XBAR and the packet
filters.

In case of test stored in BRAM (BRAM_TEST configuration),
all memory requests are directed to fake_boot_ctrl except
those send to UART.

When streaming testing of assembly test through UART is on

17

(UART_DMW configuration), all memory requests are directed
to main memory except those send to UART.

For all other configurations, destination of memory requests is
defined by respective memory address spaces (for Ethernet, SD,
UART, etc.)

18

6 Prototype Operation

6.1 Reset Sequence

After reset button is pushed, the signal is converted to an internal
system reset with zero active level.

If there is no DDR controller, system reset is passed to a
io_ctrl_top module (see Figure 1), mem_io_splitter and clk
control logic. In the case there is a memory controller, system
reset is used for MIG7 Xilinx IP core first. Reset control logic
is waiting until memory controller finishes calibration of DDR
interface and after that reset is sent to io_ctrl_top.

If design was configured with support of UART DMW and it
was enabled by SW7 on a board, control logic waits for UART
stream to be finished (see Appendix D), and after it is finished,
reset is deasserted for chip wake-up logic. In case of there is no
UART DMW support in the design or it is not enabled by a
SW7, system reset is passed to core wake-up logic directly.

After a predefined delay for wake-up logic, an interrupt packet is
send to Core0 through NOC1. This packet wakes up a core and
it starts fetching data from 0xffff_f000_0020 address.

6.2 Loading Assembly Tests from PC to DDR

Option –uart-dmw ddr makes protosyn to use define
PITONSYS_UART_BOOT during synthesis. It enables interaction
between FPGA and host PC connected to it through UART.
The format of the file with assembly test being transmitted to
FPGA is described in Appendix D.

In order to load an assembly test from a PC, pitonstream script
can be used (see Appendix B). Board type and filename should be
provided to the script. After serial port is configured, the script is
waiting for configuration completion message from FPGA (which
is a sequence of ASCII codes for a string "DONE"). After re-
ceiving a keyword, script copmiles an assembly test (until --ustr
option is provided) from the specified file, converts it to .ustr for-
mat and loads trough serial interface to an FPGA.

When test is loaded, the script is waiting for one of the three key-
words: "PASSED", "FAILED", "TIMEOUT". These keywords
are send by UART control logic from FPGA, and therefore can
not present in the test output. There are two addresses used in

19

$DV_ROOT/verif/diag/assemlby/include/good_bad_trap_handler.s
to determine if test failed or passed. Memory access at ad-
dress 0x8100000000 indicates a passed test, while an access
at address 0x8200000000 indicates a failed test. These
addresses are from reserved memory spaces of SPARCv9
specification and therefore do not interfere with test mem-
ory accesses. Checks for mentioned addresses are done in
$DV_ROOT/design/chipset/mem_io_splitter/rtl/mem_io_splitter.v.
After receiving any of the above keywords, pitonstream starts
compiling and loading the next text.

When running an assembly test on FPGA, the
whole memory space except UART address range
is mapped to a DDR. The mapping is defined by
$DV_ROOT/design/chipset/rtl/storage_addr_trans_unified.v
module. This module was generated by pitonunimap script,
provided in a release. Its current version corresponds to a
set of tests used for OpenPiton development. However it can
turn out that a new test will have some memory sections not
mapped in the module. pitonstream makes this check every
time before loading a new test to FPGA, so in the case of
ERROR: Address * is not mapped... regenerate mapping
module using pitonunimap script and copy its output file over
storage_addr_trans_unified.v.

This setup requires changing only board type for pitonstream
script and therefore allows to use the same interface and the
same logic across multiple boards, which decreases development
efforts and time.

6.3 Assembly Test Execution

Assembly tests can be compiled into BRAM (see Section 4.2.2)
using --bram_test <test name> option for protosyn. The
result of an assembly test can be either checked in the termi-
nal (for those having output to a console) or PC can be checked
using build-in FPGA Logic Analyzer. See Section 7.2 on how to
set up debug cores for Xilin FPGAs.

6.4 Booting OS from an SD Card

Micro SD card allows to store both OpenBoot and OS image on
it. OpenBoot requires processor clock frequency in order to be
able to set up divisor latch for UART16550. For current core

20

frequencies on different board refer to Table 2.

Precompiled OS image files are located os_images folder of a re-
lease. They can be written on SD card using dd Linux command
or Win32 Disk Imager on Windows. For a step by step instruc-
tions on how to boot Linux and play tetris see Appendix F.

21

7 Simulation and Debugging

It is possible to run software simulation of OpenPiton prototype
from Vivado. This feature is helpful for debugging reset sequence
for your project and checking initial initialization sequence of a
processor. This framework can be easily extend to incorporate
custom tests targeting prototype specific modules, but we leave
this discussion out of scope of this documentation.

For debugging a processor on FPGA build-in hardware
logic analyzer are used. It allows to check states of internal
signals. Instructions on how to run software simulation from
Vivado and how to add debug cores are below.

7.1 Software Simulation from Vivado

You can run simulation of a prototype from Vivado to debug
initial processor initialization and warm up. Simulation from
Vivado allows you to you IP cores used for synthesis and en-
sure that you logic is interpreted in an expected way. Top level
module for simulation if fpga_top. It generates clock are reset
control signals for prototype.

• click on Tools -> Compile Simulation Libraries
from Vivado GUI

• select VCS as a targeted simulator and check Overwrite
the current pre-compiled libraries

• click Compile and wait until it finishes

• in Flow Navigator on the left chose Simulation ->
Run Post-Synthesis Functional Simulation

• processing of netlist and compilation can take some time.
After it is finished, DVE waveform viewer will be opened

7.2 Inserting Debug Cores for Logic Analyzer

Build-in logic analyzer allow you to debug FPGA design while
it’s running. Next steps briefly describe how to add debug cores.
For more information see [6].

• find signals in the design which you want to debug. To
make sure that Vivado doesn’t optimize the logic corre-
sponding and you will be able to access a signal with debug

22

cores, add (* MARK_DEBUG = "TRUE" *) before it. This
directive works with flip-flops and ports, but can not work
well with wires. If you need, add additional logic to flip-flop
signals.

• Run Synthesis of a design

• after synthesis finished, expand Open Synthesized De-
sign tab of Flow Navigator and click on Set Up De-
bug

• follow the steps in the prompt to add signals for monitoring
and to assign clock domain to them

• save the design and finish FPGA flow down to bitstream
generation

• when programming FPGA from Vivado, in addition to
.bit files specify .ltx files with debug signals names

23

8 Description and Structure of Prototype Specific Files and
Scripts

8.1 Source Files and Scripts

BRAM memory wrappers have extension .xlx.v
and located in sram_wrappers sub-folders of the
paths: $DV_ROOT/design/chip/tile/sparc/srams/rtl,
$DV_ROOT/design/chip/l15/rtl, $DV_ROOT/design/chip/tile/l2/rtl/.
For complete list of chip memory which was mapped to BRAM
see Section 4.1.

Source code for prototype scripts is located in
$DV_ROOT/tools/src/proto directory. See Appendix B,
Appendix A, and Appendix C for more information on how to
use provided scripts.

8.1.1 Synthesis and Implementation Files

Board specific files are located in xilinx directories in
design source tree. protosyn script creates Vivado
project for each board using gen_project.tcl script in
$DV_ROOT/tools/src/proto/vivado directory. This script in
turn calls setup.tcl script in the same directory and adds all
necessary files (Verilog files, IP descriptions, .coe files, etc.) to
the project. All source files are preprocessed by pyhp script using
$DV_ROOT/tools/src/proto/common/pyhp_preprocess.tcl.
All new files required for synthesis and implementation should be
included in $DV_ROOT/tools/src/proto/common/rtl_setup.tcl
script.

Constraint files for each board are in
$DV_ROOT/design/xilinx/<BOARD name>. Description
of IP cores consists of .xci files located in xilinx/<BOARD
name> directories across design source tree. During synthesis,
all IP related files are generated from .xci files in the same
directories.

24

8.2 Generated Files

All files generated by a software simulator are put into
$MODEL_DIR folder. protosyn creates a separate sub-folder
for each board. After that, depending on design type being syn-
thesized there is a respective sub-folder (e.g system or chipset).
This folder has additional_defines.tcl script used during
implementation to set additional defines during implementation
defines when running protosyn.

protosyn_logs is an output folder for protosyn script
and contains logs for each of its step. make_project.log and
implementation.log present for every run of protosyn. In the
case an assembly tests is synthesized into BRAM, there will be
bram_map.log file.

<board name>_<design type> is a working directory for
Vivado. It has <board name>_<design type>.xpr file which is
the description of Vivado project.

Example
Running protosyn -b genesys2 will create the next folders and
files in $MODEL_DIR an shown in Figure 3.

runme.log, implementation.log, and make_project.log can be
used for debugging synthesis/implementation errors during
project development.

25

9 Networking

Ethernet is supported on the Genesys2 and the NexysVideo. It is
not supported on the VC707. On supported boards, networking
is enabled using the define PITON_FPGA_ETHERNETLITE, which is
set by default for Genesys2 and NexysVideo when building with
protosyn.

9.1 Interrupts

Interrupts are generated by the Ethernet Lite IP core upon a
successful transmit or receive. The signal is synchronized to the
clock domain of ciop_iob, which is responsible for sending the
actual interrupt packet to the core.

9.2 Bringing up the network interface

Using one of the provided disk images, boot and login as de-
scribed in Appendix F. Once booted, run the following com-
mands in the terminal to set the MAC address and bring up the
network interface:

ifconfig eth0 hw ether <MAC ADDRESS>
dhclient -v eth0

Replace <MAC ADDRESS> with the MAC address to be used for
the board.

Note: If you are planning to boot and bring up the interface
multiple times, it is highly recommended to put your board be-
hind a NAT, because dhclient will request a new DHCP lease
every time.

26

A protosyn manpage

protosyn -b <board type> [options]

Required Options:
-b, --board Name of a supported

development board.
Available options are:

vc707
genesys2
nexysVideo

Additional options:

--bram-test <test name> Name of an assembly test
to be mapped into a BRAM

--no-ddr Implemenet design without
DDR memory controller (MIG7)

--uart-dmw <storage type> Implement design with
Direct Memory Write (DMW)
from UART module turned on.
Default type:

"ddr"

--eth Add Ethernet controller
Default:

enabled

--define <comma separated list of defines>
Comma separated list
of custom Verilog macro
defines

--make-mem-map Create a mapping of a test
specified by --bram-test
option

--from <flow step> Start prototype implementation
flow from a particular step
(e.g. when for generating a
new
bitfile w/o creating a
project).
Available options are:

27

project
impl

--to <flow step> Run prototype implementation
flow to a specified step
including it (e.g. for creation
a project without running
an FPGA implementation).
Available options are:

project
impl

--oled <string> String to be displayed on OLED
display.
(Genesys2 and nexysVideo
boards only)

--slurm Run steps of flow using
SLURM job scheduler

-h, --help Print this usage message
and exit

28

B pitonstream manpage

pitonstream -b <board type> -s <storage type> -f
<filename> [options]

Required Options:
-b, --board <board type> Name of a supported

Xilinx’s development
board. Available options:

vc707
genesys2
nexysVideo

-f, --file <filename> File name with
test names. If option
--ustr is not specified,
they should be assembly
test names, otherwise
list of generated
.ustr files

-p <portname> Port name for serial
device of FPGA board
on a host PC.
Default:

ttyUSB0

--ustr Specifies that test names
in the file should be
treated as .ustr file
names

-h, --help Display this help message
and exit

Note: port name can be checked in /dev on Linux. Simply
unplug and plug again a cable connecting a board, and check
which device appears when you plug back.

29

C pitonunimap manpage

pitonunimap -b <board type> -f <filename>

Required Options:
-b, --board Name of a supported

development board.
Available options are:

vc707
genesys2
nexysVideo

-f, --file <filename> Filename with assembly
test names

Additional options:
-h, --help Print this message

and exit

30

D .ustr file format

.ustr file starts with
40’haaaaaaaaaa
- initial synchronization sequence for FPGA FSM.

After that there are N groups, each consisting of the next fields:
40’h - memory start address for data
4’h - number of sequential data blocks in a group
128’h x specified number of blocks - data blocks, 512-bits each,
stored from MSB on the left to LSB on the right. Address of
the next block increases from previous one by 8’h40

Group with address 40’hffffffffff, 8’h00 number of blocks
and 8’h00 data block serves as a stop sequence for UART stream.

31

E Porting OpenPiton Prototype to a Custom Development Board

FPGA project can be ported to development boards different
from supported ones. Follow the steps below to create a new
project and configure it for OpenPiton prototype. Instruc-
tions are presented based on Xilinx Vivado 2015.4 tool, but
they also can be used as a guideline for other versions or tools.
Project for Genesys2 development board with respective scripts
in $DV_ROOT/tools/src/proto/genesys2 can be taken as a ref-
erence.

1. Create a new folder in $DV_ROOT/tools/src/proto direc-
tory (e.g. new_board)

2. Create a new folder with the same name as above in
$MODEL_DIR directory

3. Open your tool and choose "Create New Project"

4. Set up new project name and its location (e.g. create
a project with the name of your development board and
choose $MODEL_DIR/<new_board location)

5. Choose RTL Project Type

6. Add source files to the project*

*Vivado 2015.4: this step can be skipped and script
add_files.tcl can be run instead from Vivado’s Tcl Con-
sole (see below)

7. Add IP necessary cores*

*Vivado 2015.4: folder
$DV_ROOT/tools/src/proto/genesys2/ip_cores can
be copied to $MODEL_DIR/new_folder and added as a
directory to the project

8. Add a constraint file to your design*. File
$DV_ROOT/tools/src/proto/genesys2/constraints.xdc
can be taken as a reference. Note that pin names and
clock constraints will require changes to match you FPGA
pin-out.

*Vivado 2015.4: copy
$PITON_ROOT/tools/src/proto/genesys2/constraints.xdc
to $MODEL_DIR/new_folder and add it to the project

9. Select a targeted FPGA or development board type

32

10. Finish project creation

11. Vivado 2015.4: copy all .coe files from
$DV_ROOT/tools/src/proto/common to a recently
created $MODEL_DIR/new_folder

12. Vivado 2015.4: copy $PITON_ROOT/tools/src/proto/add_files.tcl
to $MODEL_DIR/new_folder, go to that directory in
Tcl Console and execute source add_files.tcl. This
command will add necessary source files, set the top level
file, add a constraint file and set defines.

13. Vivado 2015.4: if you are receiving warnings about
locked IPs, try to run upgrade ip [get ips -all] from
its Tcl Console. If it doesn’t remove all warnings, you
will have to regenerate those IP cores manually.

Note: mig_7series_0 IP core will not be updated cor-
rectly in any case because of pin constraints. See the step
below on a required procedure to generate it for Vivado
2015.4

14. Vivado 2015.4: Regenerate MIG with settings recom-
mended for your FPGA. Due to design constraints it is rec-
ommended to choose 4:1 PHY to Controller Clock
Ratio, System Clock - “No Buffer” , Reference
Clock - “Use System Clock” , and enable XADC in-
stantiation.

15. Vivado 2015.4: Update Write and Read width for
uart_mig_afifo IP core, which depends on MIG settings
and must be equal to ‘MIG APP ADDR WIDTH+‘MIG APP
DATA WIDTH+‘MIG APP MASK WIDTH

16. Vivado 2015.4: Set up necessary type of clock input
for clk_mmcm IP (single ended VS differential). Set
a targeted clock frequency and update uart_16550,
afifo_mem_splitter, afifo_splitter_mem, and
uart_mig_afifo IP cores to match the frequency of
a generated clock.

17. Modify the next files to specify clock type, reset level, and
DDR interface of your board.

• $DV_ROOT/design/proto/fpga_top.v

– Add additional preprocessor directive if you have

33

differential clock and/or high active reset level

• $DV_ROOT/verif/env/manycore/manycore_top.v.xlx.v

– Add additional preprocessor directives if you have
differential clock and/or high active reset level

– if DDR is planned to use, create wires with re-
spective interface width under a new define for
module interface in instance of mc_top module

• $DV_ROOT/design/fpga/include/mc_define.h

– set width of DDR data bus - DDR3 DQ WIDTH*

*Vivado 2015.4: set parameters of MIG as they
are in generated IP core

• $DV_ROOT/design/fpga/mc/rtl/mc_top.v

– if DDR is planned to use, create wires with re-
spective interface width under the same define as
above

18. Set defines required for you configuration*

*For Vivado 2015.4: If you ran add_files.tcl script, it
added the following defines to your project:
NO_SCAN
FPGA_SYN
FPGA_SYN_1THREAD FPGA_SYN
PITON_PROTO
NO_USE_IBM_SRAMS
PITON_FPGA_NO_DMBR
PITON_FPGA_MC_DDR3
PITON_FPGA_SD_BOOT
Check define description in Section 5.1

19. Set a top level source file to cmp_top.v*

*Vivado 2015.4: If you ran source add_files.tcl, it
is already done for you

20. If you are planning to run OBP from BRAM, make sure
that the frequency of a reference clock for UART in Hyper-
Visor matches the system clock in the design. If necessary,
regenerate obp.coe file and bram_16384x512 IP core.

34

After these steps steps you should be able to run implementation
of OpenPiton for your FPGA.

35

F Step-by-Step Instructions for Booting Debian Linux and
Playing Tetris

Below are steps required to build an OpenPiton prototype tar-
geting Digilent Genesys2 development board and run Tetris on
a full stack Debian Linux:

• download tar.gz archive of OpenPiton release

• extract it and set up your environment and tools (see Sec-
tion 1.2)

• run protosyn -b genesys2 and wait until script exists

• because Vivado creates separate processes for its
tasks, protosyn exits before Vivado generates
a .bit file. You need to check runme.log in
$MODEL_DIR/genesys2/genesys2_piton/
genesys2_piton.runs/impl_1
to make ensure that bit file was successfully generated.

• open Hardware Manager in Vivado or Vivado Lab Edi-
tion connected to Genesys2 board

• open a target and program the board with a generated
.bit file

• put image file with OpenBoot and OS image onto SD card

• insert the SD card into the board and press RESET button

• wait for Open Boot to start OK boot prompt

• print boot Linux command in OK boot prompt

• wait for Linux to boot

• use root both as login and password

• print tetris in Linux prompt and play the game!

36

<devices>
<!--The first entry should always be the filter/chip
to xbar connection-->
<port>

<name>chip</name>
<noc2in/>

</port>
<port>

<name>mem</name>
<base>0x0</base>
<!-- 1 GB -->
<length>0x40000000</length>

</port>
<port>

<name>iob</name>
<base>0x9f00000000</base>
<length>0x10</length>
<noc2in/>

</port>
<port>

<name>sd</name>
<base>0xf000000000</base>
<length>0xff0100000</length>

</port>
<port>

<name>uart</name>
<base>0xfff0c2c000</base>
<length>0xd4000</length>
<noc2in/>

</port>
<port>

<name>net</name>
<base>0xfff0d00000</base>
<length>0x100000</length>

</port>
</devices>

Listing 1: An example devices.xml file for configuring the
IO_XBAR

37

genesys2
system

genesys2_system
genesys2_system.runs

impl_1
runme.log

synth_1
runme.log

protosyn_logs
implementation.log
make_project.log

additional_defines.tcl

Figure 3: $MODEL_DIR directory structure

Figure 4: Genesys2 board running Tetris on full stack Debian
Linux

38

G Generating an SD-Bootable Image

We consider this guide to be deprecated as we provide
working disk images. Please check our download page
for the most up-to-date images. If you wish to build
an image of your own, you will want to adapt the in-
structions to fit a newer Debian release (one targeting
SPARC64).

This appendix explains in detail how to generate an SD-bootable
image of Debian for SPARC (not SPARC64) for OpenPiton on
an FPGA. Each image consists of two items:

• An existing PROM file that contains a copy of the hyper-
visor and OpenBoot. This binary is tuned to your FPGA’s
primary clock frequency and RAM size.

• A ramdisk, which contains SILO, a bootable version of
Linux, and a full filesystem.

The PROM files are pre-generated, but you can create and mod-
ify your own ramdisk to customize the software you want to run
on OpenPiton. Ramdisks can be generated from scratch, but we
recommend that you use our distribution as a starting point.

G.1 Building a Ramdisk from Scratch

In order to create a ramdisk from scratch, simply follow these
steps on a machine running Linux.

G.1.1 Initialization

First, create an empty ramdisk. Simply execute the following in-
struction, replacing {size} with the desired size of your ramdisk
in megabytes (be sure to add the extra 16 in the command below
as noted - this space is for the PROM).

dd if=/dev/zero of=ramdisk bs=1M count={size + 16}

Next, create a Sun disk partition in this file. Run parted and
enter the following commands in order to navigate its menus.
Note that if /dev/loop0 is already in use, you can change the 0
to another number. losetup -a will show the status of all loop
devices.

sudo losetup -o 16777216 /dev/loop0 ramdisk
sudo parted /dev/loop0

39

mklabel
sun
mkpart
ext3
0
{size}M
q

Save the VTOC from the front of the ramdisk.

dd if=/dev/loop0 of=vtoc count=1

Then, make the file system. Be careful as we have seen this
command attempt to create a filesystem larger than the device.
Check that the number of blocks fits within the device and if
not, reduce the count by providing a block count at the end of
the mke2fs command.

sudo mke2fs -j /dev/loop0
y
sudo losetup -d /dev/loop0

G.1.2 Mounting and Filling the Disk

Next, use a loopback device to mount the ramdisk.

mkdir mnt
sudo mount -o loop,offset=16777216 ramdisk mnt

Then, use debootstrap to initialize a basic Debian installation
on your mounted disk (one command).

sudo debootstrap --arch=sparc --variant=minbase wheezy
mnt

This should fill the /mnt directory with a mostly-complete mini-
mal installation of Debian. However, there are some things you’ll
have to do yourself to get it to work on OpenPiton.

First, edit mnt/etc/inittab to specify the terminal and baud rate
we’re using for OpenPiton. Comment out the lines that start
getty, leaving only two uncommented as shown below.

Note that on most Debian systems tty7 ...
so if you want to add more getty’s go ...
#
1:2345:respawn:/sbin/getty -L 115200 tty1

40

#1:2345:respawn:/bin/login ttyS0 </dev/ttyS0 >/dev/ttyS0
2>&1
#2:23:respawn:/sbin/getty 38400 tty2
#3:23:respawn:/sbin/getty 38400 tty3
#4:23:respawn:/sbin/getty 38400 tty4
#5:23:respawn:/sbin/getty 38400 tty5
#6:23:respawn:/sbin/getty 38400 tty6

Example how to put a getty on a serial line (for a
terminal)
#
#s0:2345:respawn:/sbin/agetty -L --noclear ttyS0 115200
vt100
T0:2345:respawn:/sbin/getty -L ttyS0 115200 vt100
#T1:23:respawn:/sbin/getty -L ttyS1 9600 vt100

Then, edit mnt/etc/fstab to enable use of the Sun ramdisk. Re-
place the contents of that file with those shown below.

/etc/fstab: static file system information.

proc /proc proc defaults 0 0
/dev/sunhv_disk / ext3
defaults,errors=remount-ro,noatime 0 1

Finally, add a symlink to /proc/mounts in the /etc directory.

cd mnt/etc
sudo ln -nsf /proc/mounts mtab

Next, we’re going to copy over a valid boot directory. Start with
the boot directory from our provided ramdisk:

cd mnt
sudo cp path/to/existing/boot/* ./boot

Create symlinks in the root directory to point to silo.conf and
vmlinuz.

sudo ln -nsf /boot/vmlinuz vmlinuz
sudo ln -nsf /boot/silo.conf silo.conf
sudo ln -nsf /boot/silo.conf /etc/silo.conf

If you wish to modify the version of Linux being used on the
ramdisk, please note that you will need to add support for the
sunhv disk and network drivers.

41

Finally, we’re going to patch up the silo files. Change directo-
ries into the directory containing mnt. Then, run the following
command.
sudo /sbin/silo -r ./mnt -f -p 0
sync
sudo umount mnt
dd if=vtoc of=ramdisk seek=16 conv=notrunc count=1

Your ramdisk file is now ready to be used.

G.2 Modifying an Existing Ramdisk

Once you have a ramdisk (either one you generated or our sup-
plied one), you can add or remove files from it on any Linux
machine. First, mount the ramdisk file to a loopback device:
mkdir mnt
sudo mount -o loop,offset=16777216 ramdisk mnt

Copy any files you want to use into the ramdisk’s filesystem,
which is now exposed in the mnt/ directory.

If you want to run apt-get to install new packages, you first
must chroot into the mnt/ directory.
cd mnt
sudo mount -o bind /proc ./proc
sudo mount -o bind /dev ./dev
sudo mount -o bind /sys ./sys
sudo chroot .

Run apt-get to install any desired packages, making sure to run
apt-get clean once you’re finished to clear out the package
manager’s cache.

To exit, undo your chroot.
exit
sudo umount ./proc
sudo umount ./dev
sudo umount ./sys

To save the modified ramdisk back into the original file, simply
unmount it.
cd ..
sync
sudo umount ./mnt

42

G.3 Creating an SD Image

With a PROM file and a ramdisk ready, simply use dd to write
it to an SD card.

43

References

[1] D. L. Weaver, “Opensparc internals,” pp. 107–108, Sun Mi-
crosystems, Inc., October 2008.

[2] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou,
A. Lavrov, M. Shahrad, A. Fuchs, S. Payne, X. Liang,
M. Matl, and D. Wentzlaff, “Openpiton: An open source
manycore research framework,” in Proceedings of the Twenty
First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’16, (New York, NY, USA), ACM, 2016.

[3] X. Inc., “Vc707 evaluation board for the virtex-7 fpga user
guide,” April 7, 2015.

[4] X. Inc., “7 series fpgas memory interface solutions,” March 1,
2011.

[5] Y. Zhou and D. Wentzlaff, “Mitts: Memory inter-arrival time
traffic shaping,” in Proceedings of the 43rd International Sym-
posium on Computer Architecture, ISCA ’16, (New York, NY,
USA), ACM, 2016.

[6] X. Inc., “Vivado design suite user guide,” June 24, 2015.

44

	1 Preface
	1.1 Notation Conventions
	1.2 Supported Tools and Environment Set Up
	1.2.1 SW Requirements
	1.2.2 HW Requirements
	1.2.3 Job Queue Managers

	2 Introduction
	3 Prototype Architecture
	3.1 Top Level Architecture
	3.2 IO_CTRL_TOP Architecture
	3.3 IO_XBAR Overview

	4 Mapping of a Processor to FPGA
	4.1 Mapping of Processor's SRAMs
	4.2 Mapping of Main Memory
	4.2.1 Using on-Board DDR3 Memory
	4.2.2 Memory Emulation With on-FPGA BRAMs
	4.2.3 Memory Emulation With SD Card

	5 Design Configurations and Tools
	5.1 Prototype Project Defines
	5.2 Prototype Configurations
	5.3 Running Implementation for Supported Development Boards
	5.4 Memory Address Spaces for Different Prototype Configurations

	6 Prototype Operation
	6.1 Reset Sequence
	6.2 Loading Assembly Tests from PC to DDR
	6.3 Assembly Test Execution
	6.4 Booting OS from an SD Card

	7 Simulation and Debugging
	7.1 Software Simulation from Vivado
	7.2 Inserting Debug Cores for Logic Analyzer

	8 Description and Structure of Prototype Specific Files and Scripts
	8.1 Source Files and Scripts
	8.1.1 Synthesis and Implementation Files

	8.2 Generated Files

	9 Networking
	9.1 Interrupts
	9.2 Bringing up the network interface

	A protosyn manpage
	B pitonstream manpage
	C pitonunimap manpage
	D .ustr file format
	E Porting OpenPiton Prototype to a Custom Development Board
	F Step-by-Step Instructions for Booting Debian Linux and Playing Tetris
	G Generating an SD-Bootable Image
	G.1 Building a Ramdisk from Scratch
	G.1.1 Initialization
	G.1.2 Mounting and Filling the Disk

	G.2 Modifying an Existing Ramdisk
	G.3 Creating an SD Image

	References

