
OpenPit

OpenPiton Microarchitecture Specification

Wentzlaff Parallel Research Group

Princeton University

openpiton@princeton.edu

Revision History

Revision Date Author(s) Description

1.0 04/02/16 Wentzlaff
Parallel
Research
Group

Initial version

ii

Contents

1 Introduction 1

2 Architecture 2

2.1 Tile . 3

2.2 Core . 3

2.3 Cache Hierarchy 4

2.3.1 L1 Cache 5

2.3.2 L1.5 Data Cache 5

2.3.3 L2 Cache 6

2.4 Cache Coherence and Memory Consistency Model 7

2.5 Interconnect . 8

2.5.1 Network On-chip (NoC) 8

2.5.2 Chip Bridge 9

2.6 Chipset . 9

2.6.1 Inter-chip Routing 10

2.7 Floating-point Unit 10

3 Cache Coherence Protocol 11

3.1 Coherence operations 11

3.2 Coherence transaction 13

3.3 Packet formats 16

3.3.1 Packet fields 19

4 L1.5 Data Cache 23

4.1 Interfacing with L1I 23

4.1.1 Thought experiment: caching L1I in L1.5 . 23

4.2 Interfacing with L1D 23

4.2.1 Thought experiment: replacing CCX . . . 24

iii

4.3 Design note: way-map table 24

4.4 Design note: write-buffer 24

4.5 Design note: handling requests from core 25

4.5.1 Non-cachable loads/stores 25

4.5.2 Prefetch loads 25

4.5.3 Cachable load/store requests 25

4.5.4 Load/store to special addresses 26

4.5.5 CAS/SWP/LOADSTUB 27

4.5.6 L1D/L1I self-invalidations 27

4.6 Design note: handling requests from L2 27

4.6.1 Invalidations 27

4.6.2 Downgrades 27

4.7 Inter-processor Interrupts 28

4.8 Interfaces . 28

4.8.1 CCX Transceiver 28

4.9 Testing/debugging support 29

4.10 Implementation 29

4.10.1 Pipelined implementation 29

4.11 Cache configurability 30

5 L2 Cache 31

5.1 Overview . 31

5.2 Architecture Description 31

5.2.1 Input Buffer 32

5.2.2 State Array 32

5.2.3 Tag Array 33

5.2.4 Data Array 33

5.2.5 Directory Array 33

5.2.6 MSHR . 33

iv

5.2.7 Output Buffer 33

5.3 Pipeline Flow . 34

5.4 Special Accesses to L2 35

5.4.1 Diagnostic access to the data array 36

5.4.2 Diagnostic access to the directory array . . 36

5.4.3 Coherence flush on a specific cache line . . 37

5.4.4 Diagnostic access to the tag array 37

5.4.5 Diagnostic access to the state array 38

5.4.6 Access to the coreid register 39

5.4.7 Access to the error status register 39

5.4.8 Access to the L2 control register 39

5.4.9 Access to the L2 access counter 40

5.4.10 Access to the L2 miss counter 40

5.4.11 Displacement line flush on a specific address 41

6 On-chip Network 42

6.1 Dynamic Node Top 42

6.2 Dynamic Input Control 42

6.3 Dynamic Output Control 43

6.4 Buffer Management 43

References 44

v

List of Figures

1 OpenPiton Architecture. Multiple manycore chips
are connected together with chipset logic and net-
works to build large scalable manycore systems.
OpenPiton’s cache coherence protocol extends off
chip. 2

2 Architecture of (a) a tile and (b) chipset. 3

3 OpenPiton’s memory hierarchy datapath. 4

4 The architecture of the L2 cache. 6

5 I→S state transition diagrams 13

6 I→E state transition diagrams 13

7 I→M state transition diagrams. 14

8 S→M and E→M state transition diagrams 15

9 L1.5 eviction state transition diagrams 15

10 L2 eviction state transition diagrams 16

11 Pipeline diagram of the L1.5 30

12 The architecture of the L2 cache. 31

vi

List of Tables

1 Packet header format for coherence requests . . . 17

2 Packet header format for coherence responses . . 17

3 Packet header format for memory requests from
L2 (NoC2) . 18

4 Packet header format for memory responses from
memory controller to L2 18

5 FBITS configurations. 19

6 Message types used in the memory system. 20

7 Option fields for requests and responses 21

8 Data Size field . 22

9 L1.5 Diag Load/Store Field Usage 26

10 L1.5 Data Flush Field Usage 26

11 IPI vector format. “type” and “intvector” are de-
scribed in more detail in the OpenSPARC T1 Mi-
croarchitectural Manual. 28

12 Field decomposition of the state array. 32

13 Field decomposition of the MSHR meta-data array. 34

14 Field decomposition of a packet. 43

vii

1 Introduction

This document introduces the OpenPiton microarchitecture spec-
ification. Openpiton adopts OpenSPARC T1 core, so this docu-
ment focus on uncore components. For more information about
microarchitecture of the core, please refer to the OpenSPARC
T1 Micro architecture Specification [1].

The OpenPiton processor is a scalable, open-source implementa-
tion of the Piton processor, designed and taped-out at Princeton
University by the Wentzlaff Parallel Research Group in March
2015. The RTL is scalable up to half a billion cores arranged
in a 2D mesh, it is written in Verilog HDL, and a large test
suite (∼9000 tests) is provided for simulation and verification.
By making Piton open-source, we hope it would also be a useful
tool to both researchers and industry engineers in exploring and
designing future manycore processors.

This document covers the following topics:

• High-level architecture of OpenPiton

• Directory-based cache coherence protocol

• The L1.5 data cache

• The L2 cache

• On-chip network

1

 Tile

 Chip

chipset

Figure 1: OpenPiton Architecture. Multiple manycore chips are
connected together with chipset logic and networks to build large
scalable manycore systems. OpenPiton’s cache coherence proto-
col extends off chip.

2 Architecture

OpenPiton is a tiled-manycore architecture, as shown in Figure 1.
It is designed to be scalable, both intra-chip and inter-chip.

Intra-chip, tiles are connected via three networks on-chip (NoCs)
in a 2D mesh topology. The scalable tiled architecture and mesh
topology allow for the number of tiles within an OpenPiton chip
to be configurable. In the default configuration, the NoC router
address space supports scaling up to 256 tiles in each dimension
within a single OpenPiton chip (64K cores/chip).

Inter-chip, an off-chip interface, known as the chip bridge, con-
nects the tile array (through the tile in the upper-left) to off-chip
logic (chipset), which may be implemented on an FPGA or ASIC.
The chip bridge extends the three NoCs off-chip, multiplexing
them over a single link.

The extension of NoCs off-chip allows the seamless connection
of multiple OpenPiton chips to create a larger system, as illus-
trated in Figure 1. The cache-coherence protocol extends off-chip
as well, enabling shared-memory across multiple chips. A core
in one chip may be cache coherent with cores in another chip.

2

(a) (b)

Figure 2: Architecture of (a) a tile and (b) chipset.

This enables the study of even larger shared-memory manycore
systems.

2.1 Tile

The architecture of a tile is shown in Figure 2a. A tile consists of
a modified OpenSPARC T1 core, an L1.5 cache, an L2 cache, a
floating-point unit (FPU), a CCX arbiter, and three NoC routers.

The L2 and L1.5 caches connect directly to all three NoC routers
and all messages entering and leaving the tile traverse these inter-
faces. The CPU Cache-Crossbar (CCX) is the crossbar interface
used in the OpenSPARC T1 to connect the cores, L2 cache, FPU,
I/O, etc. The L1.5 is responsible for transducing between CCX
and the NoC router protocol. The CCX arbiter de-multiplexes
memory and floating-point requests from the core to the L1.5
cache and FPU, respectively, and arbitrates responses back to
the core.

2.2 Core

OpenPiton uses the OpenSPARC T1 core with minimal modifi-
cations. This core was chosen because of its industry-hardened
design, multi-threaded capability, simplicity, and modest silicon
area requirements. Equally important, the OpenSPARC frame-
work has a stable code base, implements a stable ISA with com-
piler and OS support, and comes with a large test suite.

In the taped out Piton core, the default configuration for Open-

3

Core
L1

Private
L1.5

Distributed
L2

Off-chip
Memory
Controller

NoC1

NoC2

NoC3

NoC2

NoC3

NoC1

CCX

Figure 3: OpenPiton’s memory hierarchy datapath.

Piton, the number of threads is reduced from four to two. This
was primarily done to reduce the area requirement of the core
and to reduce the pressure on the memory system. By default,
the stream processing unit (SPU), essentially a cryptographic
functional unit, is also removed from the core to save area. In-
structions intending to utilize the SPU will trigger a trap and
are emulated in software. The default TLB size is 16 entries
to reduce area (which reflects the reduction in the number of
threads), but it can be increased to 64 or decreased down to 8
entries.

An additional set of configuration registers were added which al-
low for extensibility within the core. The configuration registers
are implemented as memory-mapped registers in an alternate
address space (one way to implement CPU control registers in
SPARC). These configuration registers can be useful for adding
additional functionality to the core which can be configured from
software, e.g. enabling/disabling functionality, configuring dif-
ferent modes of operation, etc.

Many of the modifications to the OpenSPARC T1 core, like the
ones above, have been made in a configurable way. Thus, it is
possible to configure the core to the original OpenSPARC T1
specifications or a set of parameters different from the original
OpenSPARC T1 as is the default OpenPiton core.

2.3 Cache Hierarchy

OpenPiton’s cache hierarchy is composed of three cache levels,
with private L1 and L1.5 caches and a distributed, shared L2
cache. Each tile in OpenPiton contains an instance of the L1
cache, L1.5 cache, and L2 cache. The data path through the
cache hierarchy is shown in Figure 3.

4

2.3.1 L1 Cache

The L1 cache is reused, with minimal modifications, from the
OpenSPARC T1 design. It is tightly integrated to the OpenSPARC
T1 pipeline, and composed of two separate caches: the L1 data
cache and L1 instruction cache. The L1 data cache is an 8KB
write-through cache; it is 4-way set-associative and the line size
is 16-bytes. The 16KB L1 instruction cache is similarly 4-way
set associative but with a 32-byte line size. Both L1 caches’ sizes
can be configured.

There are two fundamental issues with the original OpenSPARC
T1 L1 cache design which made it suboptimal for use in a scal-
able multicore and hence required changes for use in OpenPiton.
First, write-through caches require extremely high write-bandwidth
to the next cache level, which is likely to overwhelm and congest
NoCs in manycore processors with distributed caches. This ne-
cessitates a local write-back cache. Second, the cache communi-
cation interface needs to be compliant with OpenPiton’s cache
coherence protocol, i.e., tracking MESI cache line states, hon-
oring remote invalidations, and communicating through Open-
Piton’s NoCs instead of the OpenSPARC T1’s crossbar. Rather
than modifying the existing RTL for the L1s, we introduced an
extra cache level (L1.5) to satisfy the above requirements.

2.3.2 L1.5 Data Cache

The L1.5 serves as both the glue logic, transducing the OpenSPARC
T1’s crossbar protocol to OpenPiton’s NoC coherence packet
formats, and a write-back layer, caching stores from the write-
through L1 data cache. It is an 8KB 4-way set associative write-
back cache (the same size as the L1 data cache by default) with
configurable associativity. The line size is the same as the L1
data cache at 16-bytes.

The L1.5 communicates requests and responses to and from the
core through CCX. The CCX bus is preserved as the primary
interface to the OpenSPARC T1. The L1.5 CCX interface could
relatively easily be replaced with other interfaces like AMBA R© or
AXI to accommodate different cores. When a memory request
results in a miss, the L1.5 translates and forwards request to the
L2 through the network-on-chip (NoC) channels. Generally, the
L1.5 issues requests on NoC1, receives data on NoC2, and writes
back modified cache lines on NoC3, as shown in Figure 3.

5

Global control logic

NoC3
input
buf

NoC2
output

buf

MSHR

Tag
array

State
array

Stall logic

Stall logic

Way
selection

Way
selection

Decode

Decode

Dir
array

Data
array

Msg
to send

NoC1
input
buf

Figure 4: The architecture of the L2 cache.

While the L1.5 was named as such during the development of the
OpenPiton ASIC prototype, in traditional computer architecture
contexts it would be appropriate to call it the “private L2” and to
call the next level cache the “shared/distributed L3”. The L1.5
is inclusive of the L1 data cache; each can be independently sized
with independent eviction policies. As a space- and performance-
conscious optimization, the L1.5 does not cache instructions–
these cache lines are bypassed directly between the L1 instruction
cache and the L2. It would be possible to modify the L1.5 to
also cache instructions.

More detailed interface descriptions and design notes of the L1.5
can be found in Chapter 4.

2.3.3 L2 Cache

The L2 cache is a distributed write-back cache shared by all
tiles. The default cache configuration is 64KB per tile and 4-
way set associativity, but both the cache size and associativity
are configurable. The cache line size is 64 bytes, larger than
caches lower in the hierarchy. The integrated directory cache
has 64 bits per entry, so it can precisely keep track of up to 64
sharers by default.

The L2 cache is inclusive of the private caches (L1 and L1.5).
Cache line way mapping between the L1.5 and the L2 is inde-
pendent and is entirely subject to the replacement policy of each
cache. In fact, since the L2 is distributed, cache lines consecu-

6

tively mapped in the L1.5 are likely to be strewn across multiple
L2 tiles (L2 tile referring to a portion of the distributed L2 cache
in a single tile). By default, OpenPiton maps cache lines using
constant strides with the lower address bits across all L2 tiles,
but Coherence Domain Restriction (CDR) [2], an experimental
research feature integrated into OpenPiton, can be used to inter-
leave cache lines belonging to a single application or page across
a software-specified set of L2 tiles.

As shown in Figure 12, the L2 cache is designed with dual par-
allel pipelines. The first pipeline (top) receives cache miss re-
quest packets from lower in the cache hierarchy on NoC1 and
sends memory request packets to off-chip DRAM and cache fill
response packets to lower in the cache hierarchy on NoC2. The
second pipeline (bottom) receives memory response packets from
off-chip DRAM and modified cache line writeback packets from
lower in the cache hierarchy on NoC3. The first L2 pipeline (top)
contains 4 stages and the second pipeline (bottom) contains only
3 stages since it does not transmit output packets. The inter-
action between the L2 and the three NoCs is also depicted in
Figure 3.

More information regarding L2 can be found in Chapter 5.

2.4 Cache Coherence and Memory Consistency Model

The memory subsystem maintains cache coherence with a directory-
based MESI coherence protocol. It adheres to the TSO memory
consistency model used by the OpenSPARC T1. Coherent mes-
sages between L1.5 caches and L2 caches communicate through
three NoCs, carefully designed to ensure deadlock-free operation.

The L2 is the point of coherence for all memory requests, except
for non-cacheable loads and stores which directly bypass the L2
cache. All other memory operations (including atomic opera-
tions such as compare-and-swap) are ordered and the L2 strictly
follows this order when servicing requests.

The L2 also keeps the instruction and data caches coherent. Per
the OpenSPARC T1’s original design, coherence between the two
L1 caches is maintained at the L2. When a line is present in a
core’s L1I and is loaded as data, the L2 will send invalidations
to the relevant instruction caches before servicing the load.

Some of the high-level features of the coherence protocol include:

7

• 4-step message communication

• Silent eviction in Exclusive and Shared states

• No acknowledgments for dirty write-backs

• Three 64-bit physical NoCs with point-to-point ordering

• Co-location of L2 cache and coherence directory

We document the coherence protocol in more detail in Chapter 3.

2.5 Interconnect

There are two major interconnection types used in OpenPiton,
the NoCs and the chip bridge.

2.5.1 Network On-chip (NoC)

There are three NoCs in an OpenPiton chip. The NoCs connect
tiles in a 2D mesh topology. The main purpose of the NoCs
is to provide communication between the tiles for cache coher-
ence, I/O and memory traffic, and inter-core interrupts. They
also route traffic destined for off-chip to the chip bridge. The
NoCs maintain point-to-point ordering between a single source
and destination, a feature often leveraged to maintain TSO con-
sistency. In a multi-chip configuration, OpenPiton uses similar
configurable NoC routers to route traffic between chips.

The three NoCs are physical networks (no virtual channels) and
each consists of two 64-bit uni-directional links, one in each di-
rection. The links use credit-based flow control. Packets are
routed using dimension-ordered wormhole routing to ensure a
deadlock-free network. The packet format preserves 29 bits of
core addressability, making it scalable up to 500 million cores.

To ensure deadlock-free operation, the L1.5 cache, L2 cache, and
memory controller give different priorities to different NoC chan-
nels; NoC3 has the highest priority, next is NoC2, and NoC1 has
the lowest priority. Thus, NoC3 will never be blocked. In addi-
tion, all hardware components are designed such that consuming
a high priority packet is never dependent on lower priority traf-
fic. While the cache coherence protocol is designed to be logically
deadlock free, it also depends on the physical layer and routing
to also be deadlock free.

8

Classes of coherence operations are mapped to NoCs based on
the following rules, as depicted in Figure 3:

• NoC1 messages are initiated by requests from the private
cache (L1.5) to the shared cache (L2).

• NoC2 messages are initiated by the shared cache (L2) to
the private cache (L1.5) or memory controller.

• NoC3 messages are responses from the private cache (L1.5)
or memory controller to the shared cache (L2).

2.5.2 Chip Bridge

The chip bridge connects the tile array to the chipset, through
the upper-left tile, as shown in Figure 1. All memory and I/O
requests are directed through this interface to be served by the
chipset. Its main purpose is to transparently multiplex the three
physical NoCs over a single, narrower link in pin-limited chip
implementations.

The chip bridge contains asynchronous buffers to bridge between
I/O and core clock domains. It implements three virtual off-chip
channels over a single off-chip physical channel, providing the
necessary buffering and arbitration logic. The off-chip channel
contains two 32-bit unidirectional links, one in each direction,
and uses credit-based flow control. At 350MHz, our chip im-
plementation’s target I/O frequency, the chip bridge provides a
total bandwidth of 2.8GB/s.

2.6 Chipset

The chipset, shown in Figure 2b, houses the I/O, DRAM con-
trollers, chip bridge, traffic splitter, and inter-chip network routers.
The chip bridge brings traffic from the attached chip into the
chipset and de-multiplexes it back into the three physical NoCs.
The traffic is passed to the inter-chip network routers, which
routes it to the traffic splitter if it is destined for this chipset.
The traffic splitter multiplexes requests to the DRAM controller
or I/O devices, based on the address of the request, to be ser-
viced. If the traffic is not destined for this chipset, it is routed
to another chipset according to the inter-chip routing protocol.
Traffic destined for the attached chip is directed back through
similar paths to the chip bridge.

9

2.6.1 Inter-chip Routing

The inter-chip network router is configurable in terms of router
degree, routing algorithm, buffer size, etc. This enables flexible
exploration of different router configurations and network topolo-
gies. Currently, we have implemented and verified crossbar, 2D
mesh, 3D mesh, and butterfly networks. Customized topologies
can be explored by re-configuring the network routers.

We have proven that our network routing protocols can safely
extend and be further routed (under some constraints) off chip
while maintaining their deadlock-free nature.

2.7 Floating-point Unit

We utilize the FPU from OpenSPARC T1 [3]. In OpenPiton,
there is a one-to-one relationship between cores and FPUs, in
contrast to the OpenSPARC T1, which shares one FPU among
eight cores [4]. This was primarily done to boost floating-point
performance and to avoid the complexities of having shared FPUs
among a variable number of tiles and providing sufficient floating-
point performance. The CCX arbiter always prioritizes the L1.5
over the FPU in arbitration over the shared CCX interface into
the core.

10

3 Cache Coherence Protocol

The OpenPiton processor adopts a directory-based MESI co-
herence protocol to maintain cache coherence among all proces-
sor cores. The coherence protocol operates between the private
write-back L1.5 cache, distributed shared L2 cache, and mem-
ory controller, consisting of a set of packet formats and their
expected behaviors. It is carefully crafted to ensure deadlock-
free operation using network-on-chip (NoC) channels–specifically
three NoCs with 64-bit channels. The L2 is inclusive of private
caches, so each private cache line also has a copy in the L2. The
directory information is also embedded in the L2 cache on a per-
line basis, so coherence is tracked at L2 cache line level (64B).

Some of the high-level features of our coherence protocol include:

• 4-hop message communication (no direct communication
between L1.5s)

• Silent eviction in E and S states

• No need for acknowledgement upon write-back of dirty
lines from L1.5 to L2

• Use 3 physical NoCs with point-to-point ordering to avoid
deadlock

• The directory and L2 are co-located but state information
are maintained separately

Implementations of L1.5, L2, and memory controller need to give
priority to packets of higher priority; namely, a request of lower
priority cannot block a request of higher priority. In fact, NoC3
is will never be blocked in our design. While the cache coherence
protocol is designed to be logically deadlock free, it also depends
on the physical layer to be deadlock free. See the Section on NoC
design for more detail.

3.1 Coherence operations

Non-cacheable loads and stores directly bypass the L2 cache so
they are not considered as coherence operations (Non-cacheable
loads still use L2 cache lines as temporary storage but invalidate
the remaining data after completion). Classes of coherence op-
erations are mapped to NoCs as followed: NoC1 messages are
initiated by the private cache (L1.5) to shared cache (L2).

11

• ReqRd: includes load, ifill, prefetch (unused).

• ReqExRd: includes store, block stores (unused).

• ReqAtomic: includes compare-and-swap (CAS), swap.

• ReqWBGuard: is needed to prevent read requests from
overtaking writeback requests and violate the memory or-
dering protocol.

Note: The prefetch instruction is unused in our memory system
(treated as nop). Block stores are decomposed into regular stores
in the L1.5 so they are not seen by the L2.

NoC2 messages are initiated by shared cache (L2) to private
cache (L1.5), or memory controller.

• FwdRd: downgrades a private cache line due to a read
request.

• FwdExRd: downgrades a private cache line due to an ex-
clusive read request.

• Inv: invalidates a line from S → I.

• LdMem: loads a cache line from memory.

• StMem: stores a cache line to memory.

• AckDt: acknowledges the original request with data.

• Ack: acknowledges the original request without data.

NoC3 messages are responses from private cache to shared cache.

• FwdRdAck: L1.5 acknowledges the FwdRd operation.

• FwdExRdAck: L1.5 acknowledges the FwdExRd opera-
tion.

• InvAck: L1.5 acknowledges the FwdInv operation.

• LdMemAck: memory controller acknowledges the LdMem
operation.

• StMemAck: memory controller acknowledges the StMem
operation.

• ReqWB: L1.5 evicts/writes back dirty data.

Note how requests in NoC1 depends on responses from NoC2
to finish, and that some operations in NoC2 (ie. Inv) initiates
operations in NoC3 (ie. ReqWB).

12

3.2 Coherence transaction

Req
I->S

Dir
S->S

ReqRd

AckDt

Req
I->S

Dir
M->S

ReqRd

AckDt

Owner
M->S

FwdRdAck

FwdRd

Req
I->S

Dir
E->S

ReqRd

AckDt

Owner
E->S

FwdRdAck

FwdRd

Req
I->S

Dir
E->S

ReqRd

AckDt

Owner
M->S

FwdRdAck

FwdRd

Figure 5: I→S state transition diagrams

Figure 5 shows all possible transition diagrams for the requester
(L1.5 cache) from I state to S state when issuing a read request.
If the directory is already in S state, it directly returns the re-
quested data. This results in a two-hop transaction. Otherwise,
the directory needs to send a downgrade request to the owner
(a remote L1.5 cache) first which results in a 4-hop transaction.
Notice that if the directory is in E state, the owner could be
either in E or M state because of the possible silent transition
from E to M state.

Req
I->E

Dir
I->E

ReqRd

AckDt

Req
I->E

Dir
I->E

ReqRd

AckDt

Mem

LdMemAck

LdMem

Req
I->E

Dir
E->E

ReqRd

AckDt

Owner
I->I

FwdRdAck

FwdRd

Figure 6: I→E state transition diagrams

13

Figure 6 shows all possible transition diagrams for the requester
(L1.5 cache) from I state to E state when issuing a read request.
If the directory is in I state but the cache line exists in L2, it
directly returns the requested data. Otherwise if the cache line
is not in L2, the L2 has to load the data for the memory first.
Another case is the directory is in E state, and after a downgrade
it detects the owner has already invalidated itself in silence, so
the requester still ends up in E state.

Req
I->M

Dir
I->M

ReqExRd

AckDt

Req
I->M

Dir
I->M

ReqExRd

AckDt

Mem

LdMemAck

LdMem

Req
I->M

Dir
M->M

ReqExRd

AckDt

Owner
M->I

FwdExRdAck

FwdExRd

Req
I->M

Dir
S->M

ReqExRd

AckDt

Sharer
S->I
I->I

InvAck

Inv

Req
I->M

Dir
E->M

ReqExRd

AckDt

Owner
E->I
I->I

FwdExRdAck

FwdExRd

Req
I->M

Dir
E->M

ReqExRd

AckDt

Owner
M->I

FwdExRdAck

FwdExRd

Figure 7: I→M state transition diagrams.

Figure 7 shows all possible transition diagrams for the requester
(L1.5 cache) from I state to M state when issuing an exclusive
read request. If the directory is in I state, it directly returns the
requested data (may need to fetch it from the memory first if the
data does not exist in L2). Otherwise the directory downgrades
the owner (in E or M state) or invalidates the sharers (in S state)
first before response.

14

Req
S->M

Dir
S->M

ReqExRd

AckDt

Sharer
S->I
I->I

InvAck

Inv

Req
E->M

Figure 8: S→M and E→M state transition diagrams

The requester will transition from S to M state upon receiving
an exclusive read request. The transition from E to M state is
silent. The detail transition diagrams are shown in Figure 8.

Req
S->I

Req
E->I

Req
M->I

Dir
M->I
E->I

ReqWbGuard

ReqWb

Figure 9: L1.5 eviction state transition diagrams

Figure 9 shows all possible transition diagrams for a cache line
eviction in the L1.5 cache. If the line is in E or S state, the
eviction is silent without notify the directory. Otherwise if the
line is in M state, the dirty data needs to be written back. In our
design, we try to avoid acknowledgement for write-back requests
to improve performance. In order to avoid race conditions, the
write-back request is sent through NoC3 instead of NoC1. Since
all NoCs maintain point-to-point ordering, this guarantees that

15

if another L1.5 requests the same cache line at the same time
and the request arrives the directory before the write-back, the
downgrade will not bypass the write-back request. Another race
condition comes from the same L1.5 receives a load/store and
sending out a read or exclusive read request to NoC1 after send-
ing back the write-back request to NoC3. In order to avoid the
later read/exclusive read request arrives in the directory first, a
write-back guard message is also inserted into NoC1 upon send-
ing out a write-back request to NoC3. The purpose of the write-
back guard message is to prevent later request to the same cache
line to be processed in the directory before the write-back re-
quest.

Dir
S->I

Sharer
S->I
I->I

Inv

InvAck

Dir
M->I

Owner
M->I

FwdExRd

FwdExRdAck

Dir
E->I

Owner
M->I

FwdExRd

FwdExRdAck

Dir
I

Mem

StMem

StMemAck

Dir
E->I

Owner
E->I
I->I

FwdExRd

FwdExRdAck

Figure 10: L2 eviction state transition diagrams

Figure 10 shows all possible transition diagrams for a cache line
eviction in the L2 cache. Since the L2 is inclusive and the di-
rectory information is embedded with each L2 cache line, so a
L2 eviction also invalidates all copies in private caches and the
directory information. The directory sends out invalidations (in
S state) or downgrade (in E or M state) to invalidate sharers or
the owner and transition to I state in the end. Then the evicted
cache line is written back to memory if it is dirty.

3.3 Packet formats

Request and response messages–from L1.5 to L2, L2 to L1.5, L2
to memory controller, etc...–are segmented to physical packets,
or flits, 64-bit in size. Some messages, like a write back from
L2 to memory, require as much as eleven flits, while others, like

16

FIELDS WIDTH HI LO
FLIT1 CHIPID 14 63 50

XPOS 8 49 42
YPOS 8 41 34
FBITS 4 33 30
PAYLOAD LENGTH 8 29 22
MESSAGE TYPE 8 21 14
MSHR/TAG 8 13 6
OPTIONS1 6 5 0

FLIT2 ADDRESS 48 63 16
OPTIONS2 16 15 0

FLIT3 SRC CHIPID 14 63 50
SRC X 8 49 42
SRC Y 8 41 34
SRC FBITS 4 33 30
OPTIONS3 30 29 0

Table 1: Packet header format for coherence requests

FIELDS WIDTH HI LO
FLIT1 CHIPID 14 63 50

XPOS 8 49 42
YPOS 8 41 34
FBITS 4 33 30
PAYLOAD LENGTH 8 29 22
MESSAGE TYPE 8 21 14
MSHR/TAG 8 13 6
OPTIONS4 6 5 0

Table 2: Packet header format for coherence responses

17

FIELDS WIDTH HI LO
FLIT1 CHIPID 14 63 50

XPOS 8 49 42
YPOS 8 41 34
FBITS 4 33 30
PAYLOAD LENGTH 8 29 22
MESSAGE TYPE 8 21 14
MSHR/TAG 8 13 6
RESERVED 6 5 0

FLIT2 ADDRESS 48 63 16
OPTIONS2 16 15 0

FLIT3 SRC CHIPID 14 63 50
SRC X 8 49 42
SRC Y 8 41 34
SRC FBITS 4 33 30
RESERVED 30 29 0

Table 3: Packet header format for memory requests from L2
(NoC2)

FIELDS WIDTH HI LO
FLIT1 CHIPID 14 63 50

XPOS 8 49 42
YPOS 8 41 34
FBITS 4 33 30
PAYLOAD LENGTH 8 29 22
MESSAGE TYPE 8 21 14
MSHR/TAG 8 13 6
RESERVED 6 5 0

Table 4: Packet header format for memory responses from mem-
ory controller to L2

18

a simple invalidation ack, as little as one flit. Table 1 presents
the packet header format for coherence requests, while Table 2
shows the packet header format for coherence responses. Packet
header formats for memory requests and responses are shown in
Table 3 and Table 4.

The following tables detail the general packet format used in
Piton.

3.3.1 Packet fields

CHIPID, XPOS, YPOS CHIPID, XPOS, and YPOS (and
the SRC CHIPID, SRC X, SRC Y fields) collectively identify
the precise location of the destination (source) tile. CHIPID
identifies which chip, while XPOS and YPOS indicate which tile
on said chip.

The packet format allocated 30-bits for tile address space, the-
oretically allows the design to scale up to 1-Mega tiles. Open-
Piton’s cache system (L1.5 & L2) is indeed designed to handle up
to 30-bits of tile addressing, and should be forward-compatible
with future designs.

PORT VALUE
FBITS WEST 4’b0010

SOUTH 4’b0011
EAST 4’b0100
NORTH 4’b0101
PROCESSOR 8’b0000

Table 5: FBITS configurations.

FBITS FBITS (final destination bits) field informs the desti-
nation tile router where to push the packets to. Table 5 shows
all possible configurations of FBITS. Currently possible targets
include L1.5, L2, and the off-chip interface to memory controller.
The L1.5 and L2 share the same FBITS (the PROCESSOR
port).

In the current implementation, most destinations can be inferred
semantically based on the message type, but FBITS field is still
required for the router to forward packets to the off-chip interface
in the correct direction (N/E/S/W).

PAYLOAD LENGTH PAYLOAD LENGTH field, located in
the first flit of a message, indicates to both the router and re-

19

MESSAGE TYPE VALUE DESCRIPTION
RESERVED 8’d0 reserved
LOAD REQ 8’d31 load request
PREFETCH REQ 8’d1 prefetch request, unused
STORE REQ 8’d2 store request
BLK STORE REQ 8’d3 block-store request, unused
BLKINIT STORE REQ 8’d4 block-store init request, unused
CAS REQ 8’d5 compare and swap request
CAS P1 REQ 8’d6 first phase of a CAS request, only used within L2
CAS P2Y REQ 8’d7 second phase of a CAS request if the comparison re-

turns true, only used within L2
CAS P2N REQ 8’d8 second phase of a CAS request if the comparison re-

turns false, only used within L2
SWAP REQ 8’d9 atomic swap request
SWAP P1 REQ 8’d10 first phase of a swap request
SWAP P2 REQ 8’d11 second phase of a swap request
WB REQ 8’d12 write-back request
WBGUARD REQ 8’d13 write-back guard request
NC LOAD REQ 8’d14 non-cacheable load request
NC STORE REQ 8’d15 non-cacheable store request
INTERRUPT FWD 8’d32 interrupt forward
LOAD FWD 8’d16 downgrade request due to a load request
STORE FWD 8’d17 downgrade request due to a store request
INV FWD 8’d18 invalidate request
LOAD MEM 8’d19 load request to memory
STORE MEM 8’d20 store request to memory
LOAD FWDACK 8’d21 acknowledgement of a LOAD FWD request
STORE FWDACK 8’d22 acknowledgement of a STORE FWD request
INV FWDACK 8’d23 acknowledgement of a INV FWD request
LOAD MEM ACK 8’d24 acknowledgement of a LOAD MEM request
STORE MEM ACK 8’d25 acknowledgement of a STORE MEM request
NC LOAD MEM ACK 8’d26 acknowledgement of a NC LOAD REQ request, un-

used
NC STORE MEM ACK 8’d27 acknowledgement of a NC STORE REQ request
NODATA ACK 8’d28 acknowledgement to L1.5 without data
DATA ACK 8’d29 acknowledgement to L1.5 with data
ERROR 8’d30 error message, unused
INTERRUPT 8’d33 interrupt
L2 LINE FLUSH REQ 8’d34 flush a specific L2 cache line, used only within L2
L2 DIS FLUSH REQ 8’d35 displacement of a L2 cache line, used only within L2

Table 6: Message types used in the memory system.

20

ceiving target how long the message is. The additional flits are
either inherent (eg. an L1.5 request always have two additional
flits), or optional flits containing cache line or other data.

MESSAGE TYPE MESSAGE TYPE field contains the mes-
sage type ID shown below in Table 6.

MSHR/TAG MSHR/TAG field contains the MSHR (miss-status-
handling-register) ID, or tag, of the message. The sender includes
this ID in the request in order to correctly identify the responses.

FIELDS WIDTH HI LO

Options 1
RESERVED 6 5 0

Options 2
SUBCACHELINE BIT VECTOR 4 15 12
ICACHE BIT (CACHE TYPE) 1 11 11
DATA SIZE 3 10 8

Options 3
RESERVED 30 29 0

Options 4
FILL CACHELINE STATE 2 5 4
L2 MISS 1 3 3
ADDRESS 5 4 2 2 1
LAST SUB-CACHELINE 1 0 0

Table 7: Option fields for requests and responses

OPTIONS OPTIONS1/2/3/4 fields add additional information
to a request or response. Table 7 aggregates these optional fields.
Note that OPTIONS1/3 are empty and reserved for future use.

OPTIONS2 field contains three sub-fields: sub-cache-line bit vec-
tor, icache bit, and data-size.

Sub-cache-line bit vector is valid for the Inv/FwdERd/FwdEWr/FwdM-
Rd/FwdMWr message types, where the L2 requests L1.5 to in-
validate/downgrade 16-byte portions of a 64-byte cache line. The
bit vector is also used by the L1 in the FwdAckDt message to
indicate which sub cache line portion is dirty.

21

The icache bit indicates that a ReqRd message is meant for the
instruction cache.

VALUE Transaction Size (Bytes)
3’b000 0
3’b001 1
3’b010 2
3’b011 4
3’b100 8
3’b101 16
3’b110 32
3’b111 64

Table 8: Data Size field

Data-size subfield indicates the transaction size. It is necessary
for write-through, non-cacheable, and atomic operations. Since
the packets are always 64-bit long, data addressing is aligned to
8 bytes (for example, if the core sends an 1-byte non-cacheable
store request to address 0x05 to the memory, the request will
then have 1 data packet, containg 8 bytes from 0x00 to 0x07).
In addition, the L2 always expects 8 packets in the response. If
data size is less than 64 bytes, packets will be repeated to fulfill
the 8 packets requirement (for example, if the core sends an 1-
byte non-cacheable load request to address 0x05 to the memory,
the response will have 8 data packets, each containing 8 bytes
from 0x00 to 0x07).

OPTIONS4 field contains four sub-fields: fill-cacheline-state, L2
miss, address 5 4, and last-sub-cacheline.

The fill-cache-line-state field provides the state (M/E/S) of the
cache line that L1.5 should have when filling the data cache.

The L2 miss field is an optional field for L2 to indicate the L1.5
whether the cache line request was a miss in the L2 cache.

The last-sub-cache-line bit, when used with invalidation/down-
grade acks, indicate that this message is the last of possibly sev-
eral write backs of sub-cache-lines.

22

4 L1.5 Data Cache

In the following sections, we will delve in-depth the more peculiar
functionalities in the L1.5 such as write-backs, way-map table,
and interfacing with the core through CCX.

4.1 Interfacing with L1I

Instruction cache lines are not cached in the L1.5; regardless they
still need to be cache coherent. The L1.5 does not keep track of
the L1I, rather, it delegates the instruction cache line tracking to
the L2, and only forwards data and other coherence operations
(like invalidation) to the core through the CPX bus.

OpenPiton modifies the CCX bus protocol slightly to accommo-
date cache reconfigurability, namely to be able to address bigger
and wider L1s than the default.

4.1.1 Thought experiment: caching L1I in L1.5

Fundamentally, caching L1I cache lines within the L1.5 (inclu-
sive) should be straightforward. However, the change is likely to
be complex due to assumptions made during the development of
the L1.5.

Such implementations may need to be careful of the following
points (non-exhaustive list):

• Mismatched line sizes between icache/dcache (32B/16B).
Perhaps it would be best to make L1.5 line size be 64B.
Unfortunately, changing line size here will also necessitate
changes to the L2.

• Removal/modification to L2’s icache handling logics.

• Contention between icache and dcache necessitate addi-
tional logics for invalidations and evictions.

4.2 Interfacing with L1D

The L1.5 is inclusive of L1D. Communication between these two
caches is done with the CCX bus interface, and is almost un-
changed from the T1 design.

23

4.2.1 Thought experiment: replacing CCX

Replacing the CCX while still using the T1 core is likely to re-
quire colossal efforts as CCX is highly integrated with the core
pipelines. If power is a concern (as the CCX bus is quite wide,
at 124b for PCX and 145b for CPX), it is better to buffer and
transduce locally at the core before sending to L1.5 where the
interface is easier to modify.

Modifying L1.5 to use with T2 core should be easier as cache
interface is mostly the same between T1 and T2. Bit positions
and defines are slightly different though so l15 cpxencoder.v

and l15 pcxdecoder.v (where CCX signals are translated to
L1.5 internal signals) should be modified accordingly.

4.3 Design note: way-map table

The way-map table (WMT) supports two important cache co-
herence operations: store acknowledgments and cache line inval-
idations. Store-acks and invals by index and way is mandatory
per T1 design. The core does not support invals by cache tag.
This is why T1 also has the L2s store copies of the L1I/D tag
table. Instead of duplicating the tag table, the L1.5 minimizes
overheads by implementing a novel way-map table to precisely
indicate index and way of the target cache line in L1D.

Some sort of table is needed for mismatched L1D/L1.5 sizes/as-
sociativities. However, such table is also needed for matching
L1D/L1.5 because way allocation is decoupled between the two
caches. Specifically, the L1D dictates where it will be putting
the new cache line, and L1.5 cannot always allocate similarly.

4.4 Design note: write-buffer

A write-buffer–16B (cache block size), one per thread1–was ne-
cessitate by the use of allocation-on-fill instead of allocation-
on-miss allocation policy.2 The write-buffer captures the store,
which can be any size from 1B to 8B, then merges this data when
the filling cache line comes back from the L2.

In practice, the implementation is more complex and prone to
bug. There are two primary reasons for this. First, stores from

1 T1 can issue one outstanding store per thread.
2 Changing the allocation policy will likely affect the deadlock-free coher-

ence protocol.

24

thread A can alias to a cache line of another in-flight store from
thread B. For correctness, the L1.5 needs to do a full-tag compar-
ison between the two stores (in stage S1), and update (or coalesce
write) the store-buffer entry accordingly. Second, in the corner-
case where the in-flight store is asking for write-permission from
L2 (upgrading MESI state from S to M), and somehow the cache
line (in S state) is evicted due to another fill from the L2, some
metadata are needed to guarantee correctness. The correctness
question here is whether the store acknowledgment to the L1D
should set the modify-bit or not, where this bit indicates whether
the L1D contain the cache line and should be updated. If the
cache line was in S state, was not evicted, and is present in L1D,
then the bit must be set; otherwise the bit is not set.

4.5 Design note: handling requests from core

These notes give extra detail on how the L1.5 handle load/store
requests from the T1 core.

4.5.1 Non-cachable loads/stores

These are requests either to IO space (b39 set to 1) or to memory
pages marked as non-cachable or when the core’s L1I/D are not
turned on. In all cases, the PCX requests will have the non-
cachable bit set and the L1.5 will interpret them as such.

These requests are handled as two transactions. First, L1.5 will
flush/invalidate its own and L1D cache for the request’s address
(if found valid). Then, L1.5 forwards load/write request to L2.

4.5.2 Prefetch loads

Prefetch reqs are ignored at L1.5. Prior implementations have
prefetch reqs allocated in the L1.5 but these interfere with the
reconfigurable distributed cache feature so we turned it off.

4.5.3 Cachable load/store requests

These requests are stalled from entering the pipeline if any other
operations in the pipeline alias to the (1) same set, (2) same
MSHR, or (3) when MSHR entries cannot be allocated. Condi-
tion (2) is mostly a failsafe check in the T1.

Condition (3) occurs when one thread issue multiple loads (or
stores) concurrently, which only happens when it does a block

25

load (or store). In contrast, normal cachable loads (or stores)
can only be issued serially, adhering to TSO coherence protocol.
The current Piton design does not optimize block load/store.
The L1.5 treats these requests as if they’re regular requests. As
the L1.5 only has one load (or store) MSHR per thread, the L1.5
will stall the PCX buffer until the current request is finished.

A cachable store could potentially hit L1.5’s store buffer (core is
writing to the same cache line). In this case, L1.5 coalesces the
writes and acknowledges the store immediately.

4.5.4 Load/store to special addresses

39:32 31:26 25:24 23:4 3:0

0xb0 0 way index 0

Table 9: L1.5 Diag Load/Store Field Usage

39:32 31:26 25:24 23:4 3:0

0xb3 0 way index 0

Table 10: L1.5 Data Flush Field Usage

While OpenSPARC T1 can address up to 40b of memory space,
there are special ranges of memory space dedicated to specific
purposes. The followings document the ranges that L1.5 recog-
nizes using the top 8 bits of the address (bit 39 to 32):

• 0xb0: Non-coherent diagnosis load/store

• 0xb0: Non-coherent diag load/store. OS can load/store
directly to L1.5 SRAMs with the format in Table 9.

• 0xb3: Data cache line flush. OS can store to the address
format, as shown in Table 10 to flush a specific cache in-
dex and cache way to L2. Since L1.5 is inclusive of L1D,
flushing L1.5 results in both being flushed to L2.

• 0xb2: HMC access (related to CSM)

• 0xb5: HMC flush (related to CSM)

• 0xba: Configure registers access

26

4.5.5 CAS/SWP/LOADSTUB

CAS/SWP/LOADSTUB are almost the same to L1.5, and are
handled in 2 stages. Like for non-cachable load/stores, L1.5 first
checks tag and writes back cache line if found, and also invali-
dates L1D if applicable. In the following stage, L1.5 sends appro-
priate data packets, 16B for CAS (8B compare, 8B swap), or 8B
(SWP/LOADSTUB), to the L2 to resolve the atomic operation.
L1.5 then waits for response from L2. The response is passed to
the core and is not cached; in all cases, the cache line contain-
ing the address of the atomic operation is cleared from L1D and
L1.5. Whether the line is still cached in L2 is up to L2’s policy
(and likely to be cached since L2 represents the global coherence
point for memory).

4.5.6 L1D/L1I self-invalidations

L1I/D self invals (due to data corruption) is acknowledged, but
not passed to L2.

4.6 Design note: handling requests from L2

Piton’s cache coherence scheme is based on MESI, and L1.5, con-
forms to it through a deadlock-free NoC-based coherence scheme.
The packet format and coherence request diagram are further
discussed in Chapter 3.

4.6.1 Invalidations

Invalidation requests from L2 operate on 64-byte cache blocks,
whereas L1.5 (as does L1D) employs 16-byte cache block size.
This means L1.5 needs to invalidate multiple (4) cache indices
that covers the said 64-byte block. For each 16-byte segment,
L1.5 checks tag and evict found cache lines (and writes back if
dirty). On the last cache line in the sequence, L1.5 sends back
an inval ack to L2.

4.6.2 Downgrades

Like invals, downgrades from L2 also operate on 64-byte cache
blocks. These downgrades are handled similarly to invals.

27

4.7 Inter-processor Interrupts

L1.5 primarily forwards inter-processor interrupts (IPI) for both
directions: from own core to other core, and reverse. Originating
from a core, the IPI passes through the PCX to L1.5, then NoC1
to the local L2, then bounces back to the target L1.5 through
NoC2, and finally to the target core through CPX. Otherwise if
originating from off-chip (initial wake-up message), the packet is
sent to L2 through NoC1, and continues as above.

There are two addressing scheme with inter-proc interrupts: a
compatibility scheme that requires no OS modification but only
addresses up to 64 cores (and 2 threads each), or a new scheme
for up to 64k cores. The two schemes can be used at the same
time during runtime; they are detailed in Table 11

Scheme 63 62:34 33:26 25:18 17:15 14:9 8 7:0

Compat 0 0 0 0 type coreid threadid intvector
New 1 0 ypos xpos type 0 threadid intvector

Table 11: IPI vector format. “type” and “intvector” are de-
scribed in more detail in the OpenSPARC T1 Microarchitectural
Manual.

4.8 Interfaces

L1.5 connects to other components through these main channels:
PCX/CPX, NoC1, NoC2, and NoC3. Another bus, UBC, is used
for debugging with JTAG.

4.8.1 CCX Transceiver

The core sends and receives information encoded in PCX and
CPX format as described in Tables 3-1, 3-2, 3-3, and 3-4 in the
OpenSPARC T1 Micro Specification documentation. PCX/CPX
are the bus/protocol used in the T1 to connect the core to L2,
and are mostly unchanged in Piton.

The core issues read and write requests through the PCX bus;
there can be up to 1 read, 1 write, and 1 icache request out-
standing per thread. So, in Piton configured with 2 threads, the
L1.5 can receive up to 6 concurrent requests. The number of
PCX buses per core is reduced from 5 to 1. In T1, the core can
issue requests to 4 banks of L2, plus an IOB memory controller,

28

and each requires a separate PCX channel. In Piton though, the
only destination is the L1.5. The PCX bus is buffered by a 2-
entry queue at L1.5–the minimum requirement by the PCX bus
protocol to support CAS requests.

The L1.5 returns data to the core through CPX interface. Like
PCX, it is mostly unmodified. The same CPX bus is multiplexed
between the L1.5 and the FPU module, with priority given to
the L1.5. While unnecessary, the L1.5 buffers the CPX response
to optimize for critical path and thus synthesis.

Three network-on-chip (NoC) channels are used by the L1.5 and
L2 to communicate. General detail of the coherence protocol
is portrayed in another section. Specifically to L1.5, NoC1/3
are outputs, and NoC2 is input. To break cyclic dependencies
between the channels, the L1.5 equipped the NoC1 output with a
8-entry request buffer and 2-entry 8-byte data buffer–just enough
to satisfy 6 inflight requests including 2 stores from the core.
NoC2 is currently configured with a 512-bit buffer, enough for the
largest response from L2 (icache response); and NoC3 is with a
1-entry queue, not for correctness but for performance and relax
synthesis timing requirements.

4.9 Testing/debugging support

There are two ways to access the L1.5 cache by index and way
instead of by address. First, the software can do so through read-
ing and writing the ASI addresses. Second, hardware debugger
can access the SRAMs directly by means of JTAG to CTAP to
RTAP to BIST engine.

L1.5 also filters accesses to the config register address space and
forwards them accordingly. The L1.5 itself does not have any
configurable register.

4.10 Implementation

4.10.1 Pipelined implementation

L1.5’s is pipelined to three stages: S1, S2, and S3. Fundamen-
tally, S1 decodes requests from either PCX or NoC2; S2 does tag
check, and issues read/write command to data SRAM; and S3
steers data and makes request to the right output buffer. Fig-
ure 11 shows a simplified diagram of the L1.5 pipeline.

S1

29

Figure 11: Pipeline diagram of the L1.5

• Pick request from either PCX (core) or NoC2 (L2) and
decode to internal opcodes. Give preference to NoC2 over
PCX to prevent deadlock.

• MSHR related operations: access ,allocate new entries, tag
check, restore saved operations, and store/update data to
the write-buffers.

• Stall conflicted requests due to index-locking, address con-
flict, and full MSHR.

• Initiate tag/MESI read.

S2

• Mainly tag check and initiate data read.

• Read write-buffer (for some requests).

• Misc ops include: write MESI, write tag, read WMT, read-
/write config registers.

S3

• Return data to core/L2.

• Use WMT to ack stores from core.

• Update LRU/WMT/MSHR

4.11 Cache configurability

With regards to cache size and configurability, the L1.5 is com-
pletely decoupled from both L1D and L2. By default, the L1.5 is
8192KB in size and 4-way associative, but Piton users can spec-
ify different parameters in the config files. Please refer to the
simulation manual for more detail.

30

Global control logic

NoC3
input
buf

NoC2
output

buf

MSHR

Tag
array

State
array

Stall logic

Stall logic

Way
selection

Way
selection

Decode

Decode

Dir
array

Data
array

Msg
to send

NoC1
input
buf

Figure 12: The architecture of the L2 cache.

5 L2 Cache

5.1 Overview

The L2 cache is a distributed write-back cache shared by all
cores. The default cache size is 64KB per core. It is 4-way set
associative and the block size is 64 bytes. A directory array is also
integrated with the L2 cache with 64 bits per entry. Therefore,
the directory is able to keep track of up to 64 sharers. The L2
cache is inclusive of private L1.5 and L1 caches so every private
cache line has a copy in the L2 cache.

Each distributed L2 cache receives input requests from NoC1 and
NoC3 and sends output responses to NoC2. The NoC interface
is converted from credit-based to val/rdy before connecting to
the L2 cache, so the val/rdy interface is used in those I/O ports
of L2.

5.2 Architecture Description

As shown in Figure 12, the L2 cache is pipelined with dual
pipelines in parallel. The first pipeline receives input packets
from NoC1 and sends output packets to NoC2; the second pipeline
receives input packets from NoC2 and do not directly send out
packets. An input buffer is inserted at each input port and an
output buffer is inserted at each output port. The first pipeline
contains 4 stages and the second pipeline contains only 3 stages
(Because it does not need to send output messages). The L2
cache contains 4 sub-arrays: the state array, the tag array, the
data array and the directory array. Besides, a miss status han-

31

dling register (MSHR) module is maintained to store meta-data
during L2 transactions. They are all shared and can be accessed
by both pipelines. However, since most sub-modules only have
a read/write port, they cannot be accessed by both pipelines at
the same time. Therefore, if one stage in one pipeline is active,
the corresponding stage in the other pipeline must be stalled.

5.2.1 Input Buffer

The purpose of the input buffer is to receive and buffer the entire
message before sending to the pipeline. In our design we have
two separate buffers for message header and message data. This
design simplifies the logic design by separating the control path
and data path. So the message header can be fetched in an
early stage while the message data can be fetched in a late stage
without affecting the pipelining of the next message header. For
NoC1 input buffer, we choose 8 flits as the header buffer size and
4 flits as the data buffer size because most of the input messages
from NoC1 do not contain data. While for NoC3 input buffer,
we choose 4 flits as the header buffer size and 16 flits as the data
buffer size because NoC3 input messages include the memory
response which contains 8 flits of data.

5.2.2 State Array

POSITION FIELD DESCRIPTION
5:0 OWNER the location of the owner
9:6 SUBLINE a 4-bit vector to indicate whether each 16B

subline has a private copy
10 DI 0 means data cache line, 1 means instruction

cache line
11 D L2 dirty bit
12 V L2 valid bit
14:13 MESI MESI state bits
29:15 see above state bits for way 2
44:30 see above state bits for way 3
59:45 see above state bits for way 4
63:60 LRU LRU bits for four ways
65:64 RB round-robin bits to circle around four ways

Table 12: Field decomposition of the state array.

The L2 state array contains 256 entries and each entry contains
66 bits. Each entry stores the state information for all 4 ways in
a set. There are 4 LRU bits and 2 round-robin bits to implement
a pseudo-LRU replacement policy. Besides, each way is assigned

32

15 bits: 2 bits for MESI state, 2 bits for valid/dirty state, 1 bit
to indicate a instruction/data cache line, 4 bits to indicate which
sublines exist in the private caches (Because each L2 cache line
is 64 bytes but each L1.5 cache line is only 16 bytes) and 6 bits
for owner ID. The detail field decomposition of the state array
is shown in Figure 12.

The state array has one read port and a write port. Each read-
/write operation takes one cycle. It is read in pipeline stage 1
(the data will be available in the next stage) and written in stage
4 for the first pipeline and stage 3 for the second pipeline.

5.2.3 Tag Array

The L2 tag array contains 256 entries and each entry has 104
bits for 4 ways (26 bits per way). The tag array has only one
read/write port and is accessed at stage 1.

5.2.4 Data Array

The L2 data array contains 4096 entries and each entry has 144
bits (128 data bits and 16 ECC bits). The data array has only
one read/write port and is accessed at stage 2. Since the data
width is only 16 bytes, a memory response for a cache line re-
quires four cycles for the write to complete.

5.2.5 Directory Array

The directory array contains 1024 entries and each entry has
64 bits. Therefore, it can keep track of up to 64 sharers. The
directory array has only one read/write port and is accessed at
stage 2.

5.2.6 MSHR

The MSHR has 8 entries and each entry has 2 bits of state and
122 bits of meta-data shown in Table 13. The purpose of the
MSHR is to keep meta-data for in-flight requests that need extra
communication such as coherence invalidation or memory fetch
before completion.

5.2.7 Output Buffer

The output buffer receives the entire output message at once
and sends out one flit per cycle to NoC2 through a val/rdy in-

33

POSITION FIELD DESCRIPTION
39:0 ADDR the physical address of the request
41:40 WAY the way in the L2 set
49:42 MSHRID the MSHR ID of the request in the original

requester (L1.5)
50 CACHE TYPE 0 means data cache line, 1 means instruction

cache line
53:51 DATA SIZE the requested/stored data size
61:54 MSG TYPE message type
62 L2 MISS whether it causes a L2 miss
76:63 SRC CHIPID source CHIPID
84:77 SRC X source X
92:85 SRC Y source Y
96:93 SRC FBITS source FBITS
119:97 reserved
120 RECYCLED re-excute the request in the L2 pipeline
121 INV FWD PENDING indicate that the L2 is currently sending out

invalidations

Table 13: Field decomposition of the MSHR meta-data array.

terface. The size of the output buffer is 5 flits which matches the
maximum output message size to NoC2.

5.3 Pipeline Flow

The first pipeline handles all requests from L1.5 caches through
NOC1. It contains four pipeline stages as follows: Stage 1:

• All MSHR entries are cammed to check if there is a in-flight
request having the same index bits as the current request.
If so, the current request is stalled. Other stall conditions
are also checked.

• The state array and tag array are accessed if necessary.

Stage 2:

• Use the state and tag information to determine which way
to select.

• Decode the current request and generate corresponding
control signals.

• Access the directory array and data array if necessary.

Stage 3:

• This stage is mainly introduced for timing purpose due to
the high latency of the data array accesses.

34

Stage 4:

• Generate output messages.

• write meta-data into the state array and MSHR if necessary

The second pipeline handles responses from DRAM and remote
L1.5 caches through NOC3. It contains three pipeline stages as
follows:

Stage 1:

• The MSHR is cammed for write-back requests. For other
types of requests, the specific MSHR entry is read out based
on the MSHR ID field in the current request.

• The state array and tag array are accessed if necessary.

Stage 2:

• Use the state and tag information to determine which way
to select if necessary.

• Read the data from input buffer if needed (May take mul-
tiple cycles for DRAM response).

• Access the directory array and data array if necessary.

Stage 3:

• write meta-data into the state array and MSHR if necessary

5.4 Special Accesses to L2

I/O addresses starting from 0xA0 to 0xAF are assigned for spe-
cial accesses to L2 cache. Non-cacheable loads and stores to
those addresses are translated into special accesses to L2 based
on other bits of the address. All types of special accesses are
listed as follows:

: 0xA0: Diagnostic access to the data array

: 0xA1: Diagnostic access to the directory array

: 0xA3: Coherence flush on a specific cache line

: 0xA4: Diagnostic access to the tag array

: 0xA6: Diagnostic access to the state array

: 0xA7: Access to the coreid register

35

: 0xA8: Access to the error status register

: 0xA9: Access to the L2 control register

: 0xAA: Access to the L2 access counter

: 0xAB: Access to the L2 miss counter

: 0xAC, 0xAD, 0xAE, 0xAF: Displacement line flush on a
specific address

The detailed formats of different types of special accesses are
explained below.

5.4.1 Diagnostic access to the data array

The L2 data array is a 4096x144 SRAM array. Each line contains
128 bits of data and 16 bits of ECC protection bits. Each half
of the 128 bits is protected by 8 ECC bits. Each diagnostic load
or store can either access 64 bits of data or 8 bits of ECC bits,
depending on the 31:30 bit of the address. The access format of
the address is described below.

: 39:32 ⇒ access type: 0xA0

: 31:30 ⇒ access op: 2’b00 means data bits, 2’b01 means
ECC bits, other values are undefined

: 29:24 ⇒ home node

: 23:16 ⇒ undefined

: 15:14 ⇒ way selection

: 13:6 ⇒ index selection

: 5:3 ⇒ offset selection

: 2:0 ⇒ 3’b000

A stx or ldx instruction can be used to read or write the data
array. For accesses to the data bits the entire 64 bits are stored
or loaded, while for ECC bits only the lowest 8 bits (7:0) are
stored or loaded.

5.4.2 Diagnostic access to the directory array

The L2 directory array is a 1024x64 SRAM array. Each line
contains 64 bits of sharers to keep track of up to 64 sharers.

36

Each diagnostic load or store is access on the entire 64 bits. The
access format of the address is described below.

: 39:32 ⇒ access type: 0xA1

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:16 ⇒ undefined

: 15:14 ⇒ way selection

: 13:6 ⇒ index selection

: 5:3 ⇒ offset selection

: 2:0 ⇒ 3’b000

A stx or ldx instruction can be used to read or write the directory
array.

5.4.3 Coherence flush on a specific cache line

This request flushes a L2 cache line in a selected set and way.
It also sends out invalidations to flush related L15 cache lines if
needed. The access format of the address is described below.

: 39:32 ⇒ access type: 0xA3

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:16 ⇒ undefined

: 15:14 ⇒ way selection

: 13:6 ⇒ index selection

: 5:0 ⇒ 6’b000000

A load instructions can be used to flush a L2 line regardless of
the data width (ldx, ldub ...). The loaded data has no meaning
and will not be checked.

5.4.4 Diagnostic access to the tag array

The L2 tag array is a 256x104 SRAM array. Each line contains
4 tags, each of which is 26 bits. Each diagnostic load or store is

37

access on one tag. The access format of the address is described
below.

: 39:32 ⇒ access type: 0xA4

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:16 ⇒ undefined

: 15:14 ⇒ way selection

: 13:6 ⇒ index selection

: 5:0 ⇒ 6’b000000

A stx or ldx instruction can be used to read or write the directory
array. Only the lowest 26 bits (25:0) are stored or loaded.

5.4.5 Diagnostic access to the state array

The L2 state array is a 256x66 SRAM array. Each entry contains
state bits for 4 ways, each of which is 15 bits, as well as 6 LRU
bits shared by or 4 ways. Each diagnostic load or store can either
access 60 bits of state data or 6 bits of LRU bits, depending on
the 31:30 bit of the address. The access format of the address is
described below.

: 39:32 ⇒ access type: 0xA6

: 31:30 ⇒ access op: 2’b00 means state bits, 2’b01 means
LRU bits, other values are undefined

: 29:24 ⇒ home node

: 23:14 ⇒ undefined

: 13:6 ⇒ index selection

: 5:0 ⇒ 6’b000000

A stx or ldx instruction can be used to read or write the data
array. For accesses to the state bits the lowest 60 bits (59:0) are
stored or loaded, while for ecc bits only the lowest 6 bits (5:0)
are stored or loaded.

38

5.4.6 Access to the coreid register

The coreid register is a 64-bit register in L2 cache. The lowest
34 bits store the node id of the L2 (chipid, x, y and fbits). The
higher 30 bits store the maximum number of cores in the system
aggregated across multiple chips (in the format of max chipid,
max y, max x). The access format of the address is described
below.

: 39:32 ⇒ access type: 0xA7

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:0 ⇒ undefined

A stx or ldx instruction can be used to read or write the data
array. Each diagnostic load or store operates on the entire 64
bits.

5.4.7 Access to the error status register

The error status register is a 64-bit register in L2 cache. The
lowest bit indicates the last error is correctable or not. The
second bit indicates whether the last error is uncorrectable. The
3rd bit indicates whether there are multiple errors. Bit 14 to 4
stores the line address of the error data array entry. Bit 54 to 15
stores the physical address of the request that causes the error.
The access format of the address is described below.

: 39:32 ⇒ access type: 0xA8

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:0 ⇒ undefined

A stx or ldx instruction can be used to read or write the data
array. Each diagnostic load or store operates on the entire 64
bits.

5.4.8 Access to the L2 control register

The L2 control register is a 64-bit register in L2 cache. The
lowest bit is used as the enable bit for clumpy shared memory.
The 2nd bit is the enable bit for the error status register. The

39

3rd bit is the enable bit for l2 access counter and the 4th Bit
is the enable bit for l2 miss counter. 32 to 53 are used as the
base address for the sharer map table (SMT). Other bits are
undefined. The access format of the address is described below.

: 39:32 ⇒ access type: 0xA9

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:0 ⇒ undefined

A stx or ldx instruction can be used to read or write the data
array. Each diagnostic load or store operates on the entire 64
bits.

5.4.9 Access to the L2 access counter

The L2 access counter stores the total number of L2 accesses. It
can be reset by writing all zeros into it. The access format of the
address is described below.

: 39:32 ⇒ access type: 0xAA

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:0 ⇒ undefined

A stx or ldx instruction can be used to read or write the data
array. Each diagnostic load or store operates on the entire 64
bits.

5.4.10 Access to the L2 miss counter

The L2 access counter stores the total number of L2 misses. It
can be reset by writing all zeros into it. The access format of the
address is described below.

: 39:32 ⇒ access type: 0xAB

: 31:30 ⇒ undefined

: 29:24 ⇒ home node

: 23:0 ⇒ undefined

40

A stx or ldx instruction can be used to read or write the data
array. Each diagnostic load or store operates on the entire 64
bits.

5.4.11 Displacement line flush on a specific address

This request flushes a specific address in the L2 cache. It also
sends out invalidations to flush related L15 cache lines if needed.
In order to convey both the tag and the index information in the
address, actually only the highest 6 bits of the address are used
as the access type (this is why the highest 8 bits can be either
0xAC, 0xAD, 0xAE or 0xAF), and the highest 6 bits of the tag
are stored in bit 5:0 instead. L2 will be rearrange the address
to be the correct format. The access format of the address is
described below.

: 39:34 ⇒ access type: 6’b101011

: 33:14 ⇒ lower part of the tag

: 13:6 ⇒ index selection

: 5:0 ⇒ higher part of the tag

A ldub instructions can be used to flush a L2 line. It cannot
be replaced by ldx because the offset bits are actually part of
the tag so they can be arbitrary value and violate the address
alignment requirement for data width larger then one byte. The
loaded data has no meaning and will not be checked.

41

6 On-chip Network

OpenPiton is a Tile Processor consisting of a 2D grid of homo-
geneous and general-purpose compute elements. Three dynamic
switched networks provide massive on-chip communication band-
width. These three networks communicate the tiles for cache
coherence, I/O and memory traffic, and inter-core interrupts.

These three NoCs are physical networks without the support of
virtualization. Each NoC consists of two 64-bit uni-directional
links, one for each direction. The NoC relies on a credit-based
flow control. Packets are routed by XY dimention-ordered worm-
hole routing to avoid deadlocks. Within each NoC, there is a fully
connected crossbar, which allows all-to-all five-way communica-
tion.

These three NoCs are dynamic, providing a packetizd, fire-and-
forgot interface. Each packet contains a header word denoting
the x and y destination location for the packet along with the
packet’s length. The dynamic networks are dimention-ordered
wormhole-routed. Each hop takes one cycle when packets are
going straight and one extra cycle for route calculation when a
packet must make a turn at a switch. There are four-entry FIFO
buffers that serve only to cover the link-level flow-control cost.

6.1 Dynamic Node Top

The top-level module of dynamic node is dynamic node top.v.
It implements a full crossbar. The two main components are
dynamic input top X and a dynamic output top. We have two
implementations of different X values for dynamic input top,
where X indicates the size of NIBs inside.

6.2 Dynamic Input Control

Table 14 shows the packet fields. An input control unit (dynamic input control.v)
maintains the control of where different signicals want to go and
counters of how many words are left in messages. An route re-
quest calculate unit (dynamic input route request calc.v) gen-
erates all of the route request lines and the default ready lines
from the absolute location of the tile and the absolute address
of the destination tile.

42

POSITION FIELD DESCRIPTION
DATA WIDTH−CHIP ID WIDTH−1 :
DATA WIDTH − CHIP ID WIDTH −
XY WIDTH

abs x absolute x position

DATA WIDTH − CHIP ID WIDTH −
XY WIDTH − 1 : DATA WIDTH −
CHIP ID WIDTH − 2 ∗XY WIDTH

abs y absolute y position

DATA WIDTH − 1 : DATA WIDTH −
CHIP ID WIDTH

abs chip id absolute chip id

DATA WIDTH − CHIP ID WIDTH −
2 ∗ XY WIDTH − 2 : DATA WIDTH −
CHIP ID WIDTH − 2 ∗XY WIDTH − 4

final bits the direction of the
final route

DATA WIDTH − CHIP ID WIDTH −
2 ∗ XY WIDTH − 5 : DATA WIDTH −
CHIP ID WIDTH−2∗XY WIDTH−4−
PAY LOAD LEN

length offload length

Table 14: Field decomposition of a packet.

6.3 Dynamic Output Control

A dynamic output control unit (dynamic output control.v) main-
tains the control of the output mux for a dynamic network port.
It takes routing decisions from all input ports and output the
control for the respective crossbar mux and the validOut signal
for a respective direction. If multiple input ports request for the
same output port, a round-robin selection is used to choose an
input port that is least recently used.

6.4 Buffer Management

A buffer management unit (space avail top.v) keeps track of how
many spots are free in the NIB that the packet is sent to. There
are two important inputs in this module, valid and yummy.
“Valid” indicates one packet is sent out to the output port while
“yummy” indicates a packet is consumed by the input port of
next hop. Combining a counter, the unit keeps the number of
empty buffers in input port of next hop.

43

References

[1] Sun Microsystems, Santa Clara, CA, OpenSPARC T1 Mi-
croarchitecture Specification, 2008.

[2] Y. Fu, T. M. Nguyen, and D. Wentzlaff, “Coherence domain
restriction on large scale systems,” in Proceedings of the 48th
International Symposium on Microarchitecture, MICRO-48,
(New York, NY, USA), pp. 686–698, ACM, 2015.

[3] Oracle, “OpenSPARC T1.” http://www.oracle.com/

technetwork/systems/opensparc/opensparc-t1-page-

1444609.html.

[4] OpenSPARC T1 Microarchitecture Specification. Santa
Clara, CA, 2006.

44

http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t1-page-1444609.html

	1 Introduction
	2 Architecture
	2.1 Tile
	2.2 Core
	2.3 Cache Hierarchy
	2.3.1 L1 Cache
	2.3.2 L1.5 Data Cache
	2.3.3 L2 Cache

	2.4 Cache Coherence and Memory Consistency Model
	2.5 Interconnect
	2.5.1 Network On-chip (NoC)
	2.5.2 Chip Bridge

	2.6 Chipset
	2.6.1 Inter-chip Routing

	2.7 Floating-point Unit

	3 Cache Coherence Protocol
	3.1 Coherence operations
	3.2 Coherence transaction
	3.3 Packet formats
	3.3.1 Packet fields

	4 L1.5 Data Cache
	4.1 Interfacing with L1I
	4.1.1 Thought experiment: caching L1I in L1.5

	4.2 Interfacing with L1D
	4.2.1 Thought experiment: replacing CCX

	4.3 Design note: way-map table
	4.4 Design note: write-buffer
	4.5 Design note: handling requests from core
	4.5.1 Non-cachable loads/stores
	4.5.2 Prefetch loads
	4.5.3 Cachable load/store requests
	4.5.4 Load/store to special addresses
	4.5.5 CAS/SWP/LOADSTUB
	4.5.6 L1D/L1I self-invalidations

	4.6 Design note: handling requests from L2
	4.6.1 Invalidations
	4.6.2 Downgrades

	4.7 Inter-processor Interrupts
	4.8 Interfaces
	4.8.1 CCX Transceiver

	4.9 Testing/debugging support
	4.10 Implementation
	4.10.1 Pipelined implementation

	4.11 Cache configurability

	5 L2 Cache
	5.1 Overview
	5.2 Architecture Description
	5.2.1 Input Buffer
	5.2.2 State Array
	5.2.3 Tag Array
	5.2.4 Data Array
	5.2.5 Directory Array
	5.2.6 MSHR
	5.2.7 Output Buffer

	5.3 Pipeline Flow
	5.4 Special Accesses to L2
	5.4.1 Diagnostic access to the data array
	5.4.2 Diagnostic access to the directory array
	5.4.3 Coherence flush on a specific cache line
	5.4.4 Diagnostic access to the tag array
	5.4.5 Diagnostic access to the state array
	5.4.6 Access to the coreid register
	5.4.7 Access to the error status register
	5.4.8 Access to the L2 control register
	5.4.9 Access to the L2 access counter
	5.4.10 Access to the L2 miss counter
	5.4.11 Displacement line flush on a specific address

	6 On-chip Network
	6.1 Dynamic Node Top
	6.2 Dynamic Input Control
	6.3 Dynamic Output Control
	6.4 Buffer Management

	References

