
OpenPit

OpenPiton Simulation Manual

Wentzlaff Parallel Research Group

Princeton University

openpiton@princeton.edu



Revision History

Revision Date Author(s) Description

1.0 06/10/15 MM Initial version
2.0 04/01/16 MM Second version
2.1 04/03/16 WPRG Third version
2.2 10/21/16 MM Updates for new release
2.3 09/21/17 JB Updates for new simulators

ii



Contents

1 Introduction 1

2 Supported Third-Party Tools and Environments 1

2.1 Operating Systems . . . . . . . . . . . . . . . . . 2

2.2 Unix Shells . . . . . . . . . . . . . . . . . . . . . 2

2.3 Script Interpreters . . . . . . . . . . . . . . . . . 2

2.4 Job Queue Managers . . . . . . . . . . . . . . . . 3

2.5 EDA Tools . . . . . . . . . . . . . . . . . . . . . . 3

2.5.1 Verilog Pre-Processor . . . . . . . . . . . . 3

2.5.2 Verilog Simulator . . . . . . . . . . . . . . 3

3 Directory Structure and File Organization 4

3.1 Directory Structure . . . . . . . . . . . . . . . . . 4

3.2 Common File Extensions/Naming Conventions . . 6

4 Environment Setup 8

5 Simulation 9

5.1 Simulation Models . . . . . . . . . . . . . . . . . 10

5.1.1 Types of Simulation Models . . . . . . . . 11

5.1.2 Building a Simulation Model . . . . . . . . 13

5.1.3 Configuring the manycore Simulation Model 15

5.1.3.1 Configuring the Number of Tiles 15

5.1.3.2 Configuring Cache Parameters . 16

5.2 Running a Simulation . . . . . . . . . . . . . . . . 16

5.2.1 Assembly Tests . . . . . . . . . . . . . . . 17

5.2.2 C Tests . . . . . . . . . . . . . . . . . . . 19

5.2.3 Unit Tests . . . . . . . . . . . . . . . . . . 19

5.2.4 sims Simulation Run Flow/Steps . . . . . 20

iii



5.3 Running Advanced Simulations Using the manycore
Simulation Model . . . . . . . . . . . . . . . . . . 22

5.3.1 Specifying Number of Threads and Thread
Mapping for a Simulation . . . . . . . . . 23

5.3.2 Specifying Monitor Arguments for a Sim-
ulation . . . . . . . . . . . . . . . . . . . . 24

5.3.3 Debugging Simulations with sims . . . . . 24

5.4 Running a Regression Suite . . . . . . . . . . . . 24

5.5 Running a Continuous Integration Bundle . . . . 26

5.6 Determining Test Coverage . . . . . . . . . . . . . 28

A sims manpage 29

B contint manpage 51

C Ubuntu 14.04/16.04 Dependencies and Workarounds 51

C.1 Dependencies . . . . . . . . . . . . . . . . . . . . 51

C.2 VCS simulation workaround . . . . . . . . . . . . 52

References 53

iv



List of Figures

1 OpenPiton Directory Structure . . . . . . . . . . 4

2 Unit testing infrastructure source-sink model . . . 12

3 sims Simulation Model Build Flow/Steps . . . . . 14

4 sims Simulation Model Run Flow/Steps . . . . . 21

v



List of Tables

2 Common file extensions/naming conventions . . . 6

3 OpenPiton Simulation Models . . . . . . . . . . . 11

4 OpenPiton Regression Suites . . . . . . . . . . . . 25

5 OpenPiton Continuous Integration Bundles . . . . 27

vi



1 Introduction

This document introduces the OpenPiton simulation infrastruc-
ture and how it is used to configure and run simulations. It also
discusses the OpenPiton test suite, how to add new tests, and
how to determine test coverage. Some of the information in this
document is based on the OpenSPARC T1 Processor Design and
Verification User Guide [1].

The OpenPiton processor is a scalable, configurable, open-source
implementation of the Piton processor, designed and taped-out
at Princeton University by the Wentzlaff Parallel Research Group
in March 2015. The RTL is scalable up to half a billion cores, it
is written in Verilog HDL, and a large test suite (∼8000 tests)
is provided for simulation and verification. The infrastructure is
also designed to be configurable, enabling configuration of the
number of tiles, sizes of structures, type of interconnect, etc.
Extensibility is another key goal, making it easy for users to ex-
tend the current infrastructure and explore research ideas. We
hope for OpenPiton to be a useful tool to both researchers and
industry engineers in exploring and designing future manycore
processors.

This document covers the following topics:

• Supported third-party tools and environments

• Directory structure and file organization

• OpenPiton environment setup

• Building simulation models and running simulations

• Tools for running regressions and continuous integration
bundles

• The OpenPiton test suite

• Creating new tests (assembly and C)

• Determining test coverage

2 Supported Third-Party Tools and Environments

This section discusses third-party tools/environments that are
supported and/or required to use OpenPiton. Specifically, it dis-
cusses supported operating systems (OSs), Unix shells, script in-
terpreters, job queue managers and EDA tools. For the most up-

1



to-date information, please check the OpenPiton website, www.
openpiton.org.

2.1 Operating Systems

The current release only supports Linux distributions. It has
been tested with the following distributions:

• Ubuntu 12.10

• Ubuntu 14.04*

• Ubuntu 16.04*

• Springdale Linux (Custom Red Hat distro) 6.6/6.8

• macOS High Sierra 10.13.6

We expect OpenPiton to work out of the box on most other
Linux distributions, but it has not been tested and, thus, we
provide no guarantees. There are currently no plans to expand
OS support. If you find that OpenPiton is stable on another
Linux distribution/version, please let us know at openpiton@

princeton.edu so we can update the list on our website.

*: Please see Appendix C for more information.

2.2 Unix Shells

OpenPiton currently only supports the Bash Unix shell. While
environment setup scripts are provided for CShell, OpenPiton
has not been tested for use with CShell and we do not claim
that it is supported.

2.3 Script Interpreters

Python is required in order to run PyHP preprocessor and other
python scripts. Currently it has been tested with version 2.6.6.

Perl is required in order to run several Perl scripts. It is config-
ured in $PITON ROOT/piton/piton setting.bash through the
PERL CMD environment variable and the default path is /usr/bin/perl.
Please modify the path to the correct one if Perl is installed on
a different path in your own environment. Currently Perl has
been tested with version 5.10.1.

2

www.openpiton.org
www.openpiton.org
openpiton@princeton.edu
openpiton@princeton.edu


2.4 Job Queue Managers

SLURM (Simple Linux Utility for Resource Management) is op-
tional and many OpenPiton scripts support using it to submit
batch jobs. Currently SLURM has been tested with versions
15.08.8 and 16.05.5.

2.5 EDA Tools

2.5.1 Verilog Pre-Processor

OpenPiton uses the PyHP Verilog pre-processor (v1.12) [2] to
improve code quality/readability and configurability. PyHP al-
lows for Python code to be embedded into Verilog files between
<% %> tags. The Python code can generate Verilog by printing to
stdout. The PyHP pre-processor executes the Python code and
generates a Verilog file with the embedded Python replaced by
it’s corresponding output on stdout. Verilog files with embed-
ded Python intended to be pre-processed by PyHP are given the
file extension .pyv.v or .pyv.h for define/include files. PyHP is
distributed with the OpenPiton download. More details on how
PyHP integrates into the simulation infrastructure is discussed
in Section 5.1.2

2.5.2 Verilog Simulator

Currently, Verilog simulation is supported using Synopsys VCS,
Cadence Incisive, Mentor ModelSim, and Icarus Verilog. Open-
Piton has been tested with the following simulator versions:

• vcs mx I-2014.03

• vcs mx vL-2016.06

• Cadence Incisive Simulator 15.2

• Mentor ModelSim 10.6a

• Icarus Verilog 10.1.1

If using a different version of any of these simulators, you may
need to run mkplilib clean; mkplilib ncverilog before build-
ing your simulation model.

Icarus Verilog 10.1.1 works well and we have also had success
with the latest Git sources (as of release 6). However, Icarus
does not support the full range of PLI used by OpenPiton and

3



as such some assembly tests and simulation monitors are not
supported.

3 Directory Structure and File Organization

This section discusses the OpenPiton infrastructure directory
structure and common file extensions used in OpenPiton.

3.1 Directory Structure

This section discusses the OpenPiton infrastructure directory
structure. Figure 1 shows the organization of important directo-
ries. At the top level are the build/, docs/, and piton/ direc-
tories.

build/

docs/

piton/

design/

chip/

chipset/

common/

fpga tests/

include/

tools/

verif/

diag/

env/

Figure 1: OpenPiton Directory Structure

The build/ directory is a working directory for OpenPiton and
is shipped empty. As far as simulation and testing goes, it acts as
a scratch directory for files generated when building simulation
models, compiling tests, running simulations, etc. For example,
all of the simulation models are built into corresponding direc-
tories within the build/ directory. We recommend that most
OpenPiton tools are run from within this directory, as many
tools generate files in the current working directory. For exam-
ple, running a simulation generates a log file which is stored, by
default, in the directory from which the simulation was run. It is
convenient to keep all generated files within the build/ directory
so they are easy to locate and clean up. Feel free to create your

4



own directory hierarchy within build/ to further organize your
working space, it is yours to customize.

All of the OpenPiton documentation is kept in the docs/ di-
rectory. It is conveniently distributed all in one place with the
OpenPiton download. The most up to date documentation is
also available on our website, www.openpiton.org.

The piton/ directory contains all of the design files, verifica-
tion files, and scripts. It is therefore logically broken down into
design/, verif/, and tools/ directories.

The design/ directory contains all synthesizeable Verilog for
OpenPiton and is broken down into several subdirectories: chip/,
chipset/, common/, fpga tests, and include/. Within these
four subdirectories, the directory hierarchy follows the major
points in the design’s module hierarchy. In addition to Verilog
design files, these directories contain flist files, which list Verilog
files for a given design and are referenced by simulation tools to
determine which Verilog files are needed to build portions of the
design.

The chip/ directory contains the Verilog design files for a scal-
able, configurable OpenPiton chip, please see the OpenPiton
Microarchitecture Manual for more details on the design. The
chipset/ directory contains the Verilog design files for the chipset
FPGA portion of the OpenPiton system which communicates
to an OpenPiton chip through the chip/fpga bridge and pro-
vides access to main memory, multiplexes memory-mapped I/O,
and routes packets between OpenPiton chips (see OpenPiton Mi-
croarchitecture Manual for more details). The common/ directory
includes Verilog design files common to other top-level subdirec-
tories within the design/ directory. The fpga tests/ directory
contains Verilog design files for a number of top-level designs
which test different portions of the design on FPGA, such as
I/O and memory controllers. The include/ directory contains
Verilog files which define global macros for OpenPiton. These
macros are used to set parameters for different portions of the
design.

All scripts and tools used in the OpenPiton infrastructure reside
in the tools/ directory. We will not document in detail the
scripts and tools, other than how to use them, which is what the
following sections of this document are about. There are a few
locations worth pointing out within the tools/ directory: the

5

www.openpiton.org


location of the sims configuration files, tools/src/sims/, and
the contint configuration files, tools/src/contint/. The use
of the configuration files within will be explained in Section 5.

Last, the verif/ directory houses all verification files. This in-
cludes assembly and C tests, or diags, unit tests, and simulation
models. Within verif/, the diag/ directory contains all assem-
bly and C tests. In addition, it also contains diaglists, which de-
fine parameters for certain tests and define groups of tests, or re-
gressions, and common assembly and C test infrastructure (boot
code, etc.). The env/ directory contains non-synthesizeable Ver-
ilog files (testbenches) needed to build simulation models. For
unit testing simulation models (see Section 5.1.1), the tests are
located within the env/ directory as opposed to the diag/ direc-
tory. In general, the manycore simulation model will run assem-
bly and C tests in the diag/ directory, and all other simulation
models will run based on unit tests in env/. Infrastructure for
unit testing is provided in the env/test infrstrct/ directory
along with a script to quickly and easily generate a new simula-
tion model, env/create env.py.

3.2 Common File Extensions/Naming Conventions

Table 2 lists common file extensions and naming conventions:

Table 2: Common file extensions/naming conventions

File extension Description

.v Verilog design files.

.pyv.v Verilog design files with embedded Python code.
A .pyv.v file is run through the PyHP pre-
processor prior to building simulation models,
generating a .tmp.v file with the embedded
Python code replaced by the output from exe-
cuting it. The .tmp.v file is then used to build
the simulation model.

.tmp.v Temporary Verilog design files generated by the
PyHP pre-processor from .pyv.v files. Python
code embedded in a .pyv.v file is replaced by the
output from executing it in the resulting .tmp.v.

.h/.vh Verilog macro definition files.

6



.pyv.h/.pyv.vh Verilog macro definition files with embed-
ded python code. A .pyv.h/.pyv.vh file is
run through the PyHP pre-processor prior
to building simulation models to generate a
.tmp.h/.tmp.vh with the embedded Python code
replaced by the output from executing it. The
.tmp.h/.tmp.vh file is then included from other
Verilog design files and used in building the sim-
ulation model.

.tmp.h/.tmp.vh Temporary Verilog macro definition files
generated by the PyHP pre-processor from
.pyv.h/.pyv.vh files. Python code embedded
in a .pyv.h/.pyv.vh file is replaced by the
output from executing it in the resulting
.tmp.h/.tmp.vh.

Flist./.flist Verilog file lists. These are referenced from sim-
ulation model configuration files to determine
which design files are required to build that
model.

.diaglist List of diags, assembly or C tests, which specify
test parameters and make up sims regressions.

.s Assembly file.

.c/.h C implementation and header files.

.pal PAL is a perl framework for generating random-
ized assembly tests. The .pal files are the source
files.

.vmh/vmb Hex/binary Verilog memory files.

.config Configuration files for simulation models. These
specify file lists needed to build a simulation
model, default parameters, build and run argu-
ments, etc.

.xml XML files, generally used by contint to specify
continuous integration bundles.

.py Python scripts.

.log Log files.

.image/.img Memory image files.

.html HTML files.

7



4 Environment Setup

This section discusses the environment setup for running simula-
tions with OpenPiton. A script is provided, piton/piton settings.bash,
that does most of the work for you, however, there are a few en-
vironment variables that must be set first. Below are a list of
steps to setup the OpenPiton environment for simulation.

1. The PITON ROOT environment variable should point to the
root of the OpenPiton package

2. The Synopsys environment for simulation should be setup
separately by the user. Besides adding correct paths to
your PATH and LD LIBRARY PATH environment variables and
including the Synopsys license file or your license server
in the LM LICENSE FILE environment variable (usually ac-
complished by a script provided by Synopsys or your sys-
tem administrator), the OpenPiton tools specifically refer-
ence the VCS HOME environment variable which should point
to the root of the Synopsys VCS installation.

• Note: Depending on your system setup, Synopsys
tools may require the -full64 flag. This can easily
be accomplished by adding a bash function as shown
in the following example for VCS (also required for
URG):

function vcs() { command vcs -full64 "$@"; };
export -f vcs

3. Similarly to the Synopsys environment, the Cadence and
ModelSim environments must also be set up separately by
the user. The NCV HOME environment variable should point
to the root of the Cadence Incisive Simulator installation.
MODELSIM HOME environment variable should point to the
root of the Mentor ModelSim installation.

4. The environment variable ICARUS HOME should point to the
level above the bin and lib folders containing the instal-
lation files for Icarus Verilog. If the Icarus executable
iverilog is accessible at /usr/bin/iverilog, then ICARUS HOME

should point to /usr.

5. (OPTIONAL) The Xilinx environment for FPGA proto-
typing and generating Xilinx IP must be setup separately
by the user, similar to the Synopsys environment. In gen-

8



eral, Xilinx or your system administrator should provide a
script for doing this. In particular, the XILINX environment
variable must point to the root of the Xilinx ISE installa-
tion in order for OpenPiton to use any Xilinx tools and/or
IP. This is mainly relevant to Section ?? of this document
for simulation using Xilinx IP simulation models, but is
more pertinent to topics discussed in the OpenPiton FPGA
Manual. This setup is not necessary if no Xilinx tools or IP
are used (if you don’t plan to use FPGA implementations).

6. (OPTIONAL) In order to run C tests in OpenPiton, a
GCC compiler targeting the SPARC V9 architecture must
be used to compile the tests. Currently, this compiler is
not released with OpenPiton. Thus, the PITON GCC envi-
ronment variable must point to a GCC binary that tar-
gets the SPARC V9 architecture. Please contact us at
openpiton@princeton.edu or on the OpenPiton Google
group if you need help or more information on setting this
up.

7. Run ”source $PITON ROOT/piton/piton settings.bash”
to setup the OpenPiton environment

• Note: A CShell version of this script is provided, but
OpenPiton has not been tested for and currently does
not support CShell.

There are two environment variables set by the environment
setup script that may be useful while working with OpenPiton:

• DV ROOT points to $PITON ROOT/piton

• MODEL DIR points to $PITON ROOT/build

5 Simulation

Running a simulation with OpenPiton requires two components:
a simulation model and a test. This section will discuss how to
build simulation models, how to run tests on simulation models,
and how to use high-level simulation infrastructure, i.e. regres-
sions and continuous integration bundles.

The sims tool is used to build models, run tests, and run re-
gressions. It uses information from configuration files to setup
a simulation environment and make calls to the Verilog simu-
lator (e.g. Synopsys VCS). It may also call other tools (e.g.

9

openpiton@princeton.edu


PyHP preprocessor, compiler, assembler, test generation scripts,
etc.) in order to compile tests into the proper format or per-
form other tasks. sims outputs log files, temporary configuration
files, and results files to the current working directory by default,
therefore it is recommended that you call sims from within the
$PITON_ROOT/build directory to keep all temporary/generated
files in one place. The manpage for sims is provided in Ap-
pendix A of this document for convenience.

The contint tool is used to run continuous integration bundles.
It operates similarly to sims and ultimately calls sims to compile
simulation models and run tests. More details on contint will be
discussed in Section 5.5. The manpage for contint is provided
in Appendix B of this document for convenience.

5.1 Simulation Models

A simulation model is made up from a set of design under test
(DUT) Verilog files, a set of top-level Verilog files which create
a testbench environment, a list of Verilog file lists (Flists) which
specify the DUT Verilog files as well as the top-level testbench
Verilog files, and a list of Verilog simulator (e.g. Synopsys VCS)
command line arguments. This is all used to eventually call
the Verilog simulator (e.g. Synopsys VCS) to compile a simu-
lation executable and supporting files to a simulation model di-
rectory, $MODEL_DIR/<simulation_model_dir>(MODEL DIR de-
faults to $PITON_ROOT/build), where <simulation_model_dir>
is the name of the simulation model. Within the simulation
model directory, specific instances of that model are built into
a directory with a build ID, by default this is set to rel-0.1/,
but may be overridden using the -build_id=NAME argument to
sims (for more details see the sims man page in Appendix A).

The DUT Verilog files are generally located within the $PITON_

ROOT/piton/design directory, while the top-level testbench Ver-
ilog files are located within $PITON_ROOT/piton/verif/env/<simulation_

model_dir>, where <simulation_model_dir> is the name of
the simulation model. This clearly separates synthesizeable Ver-
ilog from non-synthesizeable Verilog. Flists, which are simply
lists of Verilog files, are generally co-located in the same direc-
tory as the Verilog files they list. A simulation model specifies a
list of Flists, which in aggregate specify all Verilog files needed
for that model, in a sims configuration file located in $PITON_

ROOT/piton/tools/src/sims/. The name of the configuration

10



Table 3: OpenPiton Simulation Models
Name Type

manycore C/Assembly
chip fpga bridge Unit Test

dmbr Unit Test
dmbr test Unit Test

fpga chip bridge Unit Test
fpga fpga hpc bridge Unit Test
fpga fpga lpc bridge Unit Test

host fpga comm Unit Test
ifu esl Unit Test

ifu esl counter Unit Test
ifu esl fsm Unit Test

ifu esl htsm Unit Test
ifu esl lfsr Unit Test

ifu esl rtsm Unit Test
ifu esl shiftreg Unit Test

ifu esl stsm Unit Test
jtag testbench Unit Test
memctrl test Unit Test

sdctrl test Unit Test
uart serializer Unit Test

file for a given simulation model name is <simulation_model_

name>.config. This configuration file also lists the Verilog simu-
lator (e.g. Synopsys VCS) command line arguments and default
sims command line arguments.

5.1.1 Types of Simulation Models

OpenPiton supports two different types of simulation models:
assembly/C test simulation models, namely the manycore simu-
lation model, and unit test simulation models. Table 3 lists the
OpenPiton simulation models and their type. Rather evident
from their names, the assembly/C test simulation model builds
a model of at least one core with surrounding infrastructure such
that assembly and C tests may be run on it, while the unit test
simulation models directly test a small, specific portion of the
design using input and output vectors. Both types of models
are compiled the same way, however, require different types of
tests when running a simulation using the model. The details

11



Source 

Sink 

DUT 

Input vectors 

Output vectors 

Input Vector Queue 

Output Vector Queue  

Input 
Vector 

File 
(.vmh) 

Output 
Vector 

File 
(.vmh) 

Figure 2: Unit testing infrastructure source-sink model

of the manycore simulation model will not be discussed, as it
is quite complex and provides quite a bit of configurability and
flexibility already. Therefore, we do not expect users to have to
create a new assembly/C test simulation model or modify the
manycore simulation model. If your use case of OpenPiton does
require this, please post to the OpenPiton Google group or email
openpiton@princeton.edu for questions and/or advice.

The manycore simulation model is currently the only simulation
model to support assembly/C tests. It creates a 2D mesh of
OpenPiton tiles which represents a single OpenPiton chip. For
more details on the OpenPiton architecture, please refer to the
OpenPiton Microarchitecture Manual. The number of tiles in
each dimension is configurable, with a maximum of 256 in each
dimension (limited by core addressibility). The sizes of caches
and other structures in the design is configurable in addition to
other parameters within the core, i.e. thread count, presence
of an FPU or SPU, etc. There are plans to support multi-chip
simulation models in a future release to make 1/2 billion cores
realizeable (using per core addressibility and chip addressibility
space).

A unit testing framework is provided for the unit test simulation
models in $PITON_ROOT/piton/verif/env/test_infrstrct. In
general, the existing OpenPiton unit test simulation models use
this testing infrastructure. The OpenPiton unit testing infras-
tructure follows a source-sink model, as shown in Figure 2. Es-
sentially, a source Verilog module provides new input vectors
to the DUT on every cycle and a sink Verilog module checks

12

openpiton@princeton.edu


the output vectors from the DUT on every cycle against an ex-
pected value. The input vectors and expected output vectors
are supplied through .vmh/.vmb files, which are read into the
source/sink’s input/output vector queue. The .vmh/.vmb files
are lists of input/output vectors, where each line represents an
entry into the source/sink’s input/output vector queues. Thus,
each line represents an input vector or expected output vector
for a given unit testing simulation cycle. Consequently, tests
for unit testing simulation models are specified by the names of
these .vmh/.vmb files. The .vmh/.vmb files are commonly lo-
cated in $PITON_ROOT/verif/env/<simulation_model_name>

/test_cases and are loaded into the simulation model at run-
time. This allows for many different source-sink .vmh/.vmb file
pairs testing different parts of the design to be run on the same
simulation model.

5.1.2 Building a Simulation Model

All simulation models are built the same way, using the sims

tool. In general, the simulation model name is specified through
the -sys=NAME argument. This along with the -vcs build ar-
gument instructs sims to build the simulation model using the
Synopsys VCS Verilog simulator. Build commands for VCS, In-
cisive, ModelSim, and Icarus Verilog are shown below:

• Synopsys VCS: sims -sys=<simulation model name> -vcs build

• Cadence Incisive: sims -sys=<simulation model name>

-ncv build

• Icarus Verilog: sims -sys=<simulation model name> -icv build

• Mentor ModelSim: sims -sys=<simulation model name>

-msm build

where <simulation model name> is the name of the simulation
model you wish to build. Figure 3 shows the main steps invoked
by this command. First, the results directory is setup (defaults
to $PWD, but can be changed with the -results dir=PATH op-
tion to sims). This is where the logs and simulation results
are stored. Next, the sims configuration files are found through
the sims master configuration file, $PITON_ROOT/piton/tools/
src/sims.config by default (can be changed with the -sims config=FILE

option to sims), and are parsed to determine the valid simula-
tion model to build and the configuration parameters for it. The

13



Setup Environment 
 

Set results directory (default is $PWD) 
Get/Parse configuration files 
Setup/create model directory 

Pre-build steps 
 

Generate RTL config file (timescale, etc.) in model dir 
Aggregate Flists into model dir (Preprocess Verilog) 

 Copy aggregated Flist to $PWD 

Synopsys VCS Build 
 

Change directory to model directory 
Construct VCS command from config files and 

command line arguments 
Transfer some build args to Flist 

Run VCS build command 
Restore working directory 

Other Simulator Build Steps 
(not yet supported) 

Figure 3: sims Simulation Model Build Flow/Steps

final environment setup step is to create and setup the model
directory (defaults to $MODEL DIR, but can be changed with the
-model dir=PATH option to sims). This is the directory where
models will be built into and stored for multiple uses.

After the environment is setup, sims performs a few pre-build
steps. This includes generating a RTL configuration file. This file
is always included when building the model and define things like
the Verilog timescale directive for the whole simulation model.
sims also aggregates all of the Flists specified in the configu-
ration file into one large flist in the model directory and then
copies it into the current working directory. As sims aggregates
the Flists together, it automatically detects files that need to be
preprocessed by PyHP (via the file extension) and runs the pre-
processor to generate the temporary design file to be used when
building the simulation model. Any other Verilog preprocessing
also occurs here. Lastly, some of the command line arguments
are merged into the Flist to simplify the Verilog simulator invo-
cation command.

The last step is to invoke the Verilog simulator to build the sim-
ulation model. This is the point where different simulators and
their command line arguments can be used. First, sims changes
the current working directory to the directory in which the model
is to be built (determined by -model dir=PATH, -sys=NAME, and
-build_id=NAME arguments). Next, the simulator command is
constructed based on the simulation model configuration file (all
RTL design files, simulator command line arguments, etc.) and
any sims command line arguments. Finally, the Verilog simula-

14



tor is called to build the simulation model. For Synopsys VCS,
this produces a simv simulation executable in the simulation
model directory. The executable can be called with a test and
various command line arguments to run a simulation, discussed
in Section 5.2. After the simulation model is built, the current
working directory is restored to its previous location.

It is also worth noting that any call to sims generates a sims.log

file in the current working directory containing a duplicate of
everything printed to stdout during the execution of that com-
mand. In addition, sims maintains a history file, history.sims
of all commands executed from that directory. These files can
be useful in working with sims in general.

While there are many sims command line arguments to allow
for configuring and controlling the simulation model build pro-
cess, the RTL design, etc., for most simulation models, providing
the -sys=NAME and -vcs build/-ncv build/-icv build argu-
ments is all that is needed. One other argument worth pointing
out for VCS simulation is -debug all, which allows for simula-
tions to be run with the DVE GUI (using the -gui argument
to the simulation run command) for debugging purposes. Please
refer to the sims manpage in Appendix A for a detailed de-
scription of each command line argument. The manycore simu-
lation model provides many configurability options and is thus
discussed in the next section.

5.1.3 Configuring the manycore Simulation Model

The manycore simulation model is quite configurable, and, thus,
has some sims command line arguments that can be used when
-sys=manycore is specified. Specifically, the number of tiles can
be modified and different types of IP block simulation models
can be used.

5.1.3.1 Configuring the Number of Tiles The -x tiles

and -y tiles options are used to specify the number of tiles
in the x-dimension and y-dimension, respectively, of the 2D tile
mesh created by the manycore simulation model. The default
is -x tiles=1 and -y tiles=1, which builds a single tile Open-
Piton chip. The maximum value for both options is 256, due
to the addressing space reserved in the NoC routers for cores.
The number of cores in the system can be further expanded by

15



connecting multiple OpenPiton chips together, however, support
for this will be available in a future release.

5.1.3.2 Configuring Cache Parameters All cache mod-
ules including L1 instruction/data, L1.5 and L2 caches can be
configured on both cache size and associativity. This can be done
by specifying the following switches either on the sims command
line or in the config file (eg. manycore.config).

• -config l1i size and -config l1i associativity

• -config l1d size and -config l1d associativity

• -config l15 size and -config l15 associativity

• -config l2 size and -config l2 associativity

All these parameters need to be set as powers of 2, otherwise
they may cause incorrect cache behavior. As an example, to
override the L2 cache to be 32KB with 8-way associativity, add
-config l2 size=32768 and -config l2 associativity=8 to
the build command, eg.:

sims -vcs_build -sys=manycore -config_l2_size=32768 -

config_l2_associativity=8

Only the default cache configs are exhaustively tested, though
the other configs should work with most tests in the test suite.
A few things to keep in mind when applying other configs:

• Lowering L1I/D cache sizes/associativities below certain
sizes is incompatible with the TLBs within the core.

• Certain tests in the regression suite will fail due to assump-
tions of cache line placements referencing the default cache
sizes.

Although these configurations are only given as experimental
features, please let us know if there are any bug or difficulty in
changing the caches in the forum.

5.2 Running a Simulation

This section discusses how to run a simulation using a simula-
tion model. Specifying simulation tests/stimuli is different for
the different types of simulation models/tests, however other
parameters to sims needed to run a simulation are the same.

16



The -sys=NAME is required to specify which simulation model
is to be used, this is the same value used when building the
simulation model. If you have multiple instances of the same
simulation model built (possibly with different design parame-
ters), the -build_id=NAME argument allows you to select be-
tween them. This argument defaults to rel-0.1. Note that the
manycore simulation model requires the -x tiles and -y tiles

arguments to be specified if they were specified when building
the simulation model, however this is a special case. Other sim-
ulation models generally do not have required, model-specific,
simulation run arguments. Along with the -sys=NAME argument
and any other arguments required by the simulation model, the
-vcs run/-ncv run/-icv run arguments instruct sims to run a
simulation using VCS/Incisive/ModelSim/Icarus respectively.

One other argument worth mentioning is -gui. This optional
argument requires the -debug all argument to be specified when
building the simulation model, and instructs sims to run the
simulation in the DVE GUI, which enables waveform viewing,
breakpointing, signal tracing, etc. This has only been tested
with VCS.

In the basic case, the last argument that must be supplied is the
simulation stimuli, or the test.

5.2.1 Assembly Tests

The simulation stimuli, or test, for an assembly test is specified as
simply the name of the assembly file corresponding to that test.
The assembly file argument is specified as the first argument
without an option identifier:

• VCS: sims -sys=manycore -x_tiles=X -y_tiles=Y -vcs_

run <assembly_test_file>

• Incisive: sims -sys=manycore -x_tiles=X -y_tiles=Y -

ncv_run <assembly_test_file>

• ModelSim: sims -sys=manycore -x_tiles=X -y_tiles=

Y -msm_run <assembly_test_file>

• Icarus: sims -sys=manycore -x_tiles=X -y_tiles=Y -

icv_run <assembly_test_file>

or using the -asm diag name=NAME argument:

17



• VCS: sims -sys=manycore -x_tiles=X -y_tiles=Y -vcs_

run -asm_diag_name=<assembly_test_file>

• Incisive: sims -sys=manycore -x_tiles=X -y_tiles=Y -

ncv_run -asm_diag_name=<assembly_test_file>

• ModelSim: sims -sys=manycore -x_tiles=X -y_tiles=

Y -msm_run -asm_diag_name=<assembly_test_file>

• Icarus: sims -sys=manycore -x_tiles=X -y_tiles=Y -

icv_run -asm_diag_name=<assembly_test_file>

For example, to run the assembly test princeton-test-test.s
you would run the following command:

• VCS: sims -sys=manycore -x_tiles=X -y_tiles=Y -vcs_

run princeton-test-test.s

• Incisive: sims -sys=manycore -x_tiles=X -y_tiles=Y -

ncv_run princeton-test-test.s

• ModelSim: sims -sys=manycore -x_tiles=X -y_tiles=

Y -msm_run princeton-test-test.s

• Icarus: sims -sys=manycore -x_tiles=X -y_tiles=Y -

icv_run princeton-test-test.s

or

• VCS: sims -sys=manycore -x_tiles=X -y_tiles=Y -vcs_

run -asm_diag_name=princeton-test-test.s

• Incisive: sims -sys=manycore -x_tiles=X -y_tiles=Y -

ncv_run -asm_diag_name=princeton-test-test.s

• ModelSim: sims -sys=manycore -x_tiles=X -y_tiles=

Y -msm_run -asm_diag_name=princeton-test-test.s

• Icarus: sims -sys=manycore -x_tiles=X -y_tiles=Y -

icv_run -asm_diag_name=princeton-test-test.s

All of the provided assembly tests are located in $PITON_ROOT/

piton/verif/diag/assembly. You can trivially locate one you
would like to run, specify it to sims as above, and run a simula-
tion of that test. There are many other arguments available when
running assembly tests which control different parts of the sim-
ulation, i.e. number of threads, maximum simulation cycles, en-
abling/disabling of verification monitors, assembler arguments,

18



etc. More complex simulation run commands involving these
types of arguments are discussed in Section 5.3.

5.2.2 C Tests

All C tests are located in $PITON_ROOT/piton/verif/diag/c.
In addition, there is an assembly file associated with each C test
in $PITON_ROOT/piton/verif/diag/assembly/c. The assem-
bly file contains directives to the assembler which instruct it to
invoke the compiler. Note that the PITON GCC environment vari-
able must be set to a GCC binary that targets the SPARC V9
architecture in order to be able to compile C tests in OpenPiton.
The assembly directives point to the corresponding C files as-
sociated with this test. Specify the associated assembly file the
same way assembly tests are specified in order to run the C test.
For example, in order to run factorial.c, which has a corre-
sponding factorial.s, you would run the following command:

• VCS: sims -sys=manycore -x_tiles=X -y_tiles=Y -vcs_

run factorial.s

• Incisive: sims -sys=manycore -x_tiles=X -y_tiles=Y -

ncv_run factorial.s

• ModelSim: sims -sys=manycore -x_tiles=X -y_tiles=

Y -msm_run factorial.s

• Icarus: sims -sys=manycore -x_tiles=X -y_tiles=Y -

icv_run factorial.s

Similar to assembly tests, there are many other arguments avail-
able when running C tests allowing for more complex simula-
tions. These arguments apply to both assembly and C tests and
are therefore discussed in Section 5.3.

5.2.3 Unit Tests

Unit tests that use the OpenPiton testing infrastructure are lo-
cated within the simulation model directory for which the unit
test applies, $PITON_ROOT/piton/verif/env/<simulation_model_
name>/test_cases. As described in Section 5.1.1, unit tests are
specified by the .vmh/.vmb Verilog memory files. There are gen-
erally two files in the test cases directory associated with each
unit test, one for the source, <unit test name> src.vmh, and
one for the sink, <unit test name> sink.vmh. The <unit test name>

19



is supplied as a plusarg to the Verilog simulator (e.g. Synopsys
VCS), +test case=<unit test name>. The testing infrastruc-
ture adds the corresponding suffix ( src.vmh or sink.vmh) to
load the source and sink memory files and run the test. In or-
der to do this using sims, the -sim run args=OPTION is used.
This option causes sims to pass the supplied OPTION directly
to the Verilog simulator (e.g. Synopsys VCS). Thus, to run the
test step unit test for the ifu esl counter simulation model,
which has the test step src.vmh and test step sink.vmh files
located within $PITON_ROOT/piton/verif/env/ifu_esl_counter/

test_cases, you would run the following command:

• VCS: sims -sys=ifu_esl_counter -vcs_run -sim_run_

args=+test_case=test_step

• Incisive: sims -sys=ifu_esl_counter -ncv_run -sim_

run_args=+test_case=test_step

• ModelSim: sims -sys=ifu_esl_counter -msm_run -sim_

run_args=+test_case=test_step

• Icarus: sims -sys=ifu_esl_counter -icv_run -sim_run_

args=+test_case=test_step

5.2.4 sims Simulation Run Flow/Steps

The steps invoked when running a simulation with sims are de-
picted in Figure 4. The initial environment setup steps for run-
ning a simulation are mostly identical to that of building a model.
However, it is not necessary to create and setup a model direc-
tory, as it is assumed a model is already built.

After the initial setup, the assembler and/or compiler must be
called in order to assemble/compile assembly and C tests. Unit
tests skip this step. sims first locates the assembly file spec-
ified at the command line to run the assembly or C test. The
-asm diag root=PATH argument specifies where sims should look
for the assembly file and defaults to $PITON_ROOT/piton/verif/

diag for the manycore model. Once found, sims copies the as-
sembly file to the current working directory as diag.s and ex-
tracts any sims command line arguments designated by !SIMS+ARGS:

in the assembly file. The assembler command is constructed
based on sims command line options and configuration files and
is executed, providing diag.s as input. Note, as mentioned in
Section 5.2.2, C tests are run by referencing their associated as-

20



Setup Environment 
 

Set results directory (default is $PWD) 
Get/Parse configuration file 

Assemble Test 
 

Find assembly file from command line argument  
Copy the test to $PWD (as diag.s) 

Extract any simulation options from the test 
 Construct assembler (midas) command and execute 

Synopsys VCS Run 
 

Verify a model was built 
Extract good/bad trap addresses from test symbol  

table if assembly or C test 
Construct VCS command from config files and 

command line arguments 
Run VCS run command 

Other Simulator Run Steps 
(not yet supported) 

Assembly/C tests 

Unit tests 

Post-Process Results 
 

Run any user or model specified post-process 
commands 

 

Figure 4: sims Simulation Model Run Flow/Steps

sembly file which contains directives to the assembler to call the
C compiler. Thus, the above process is the same for both assem-
bly and C tests.

Running the assembler generates a number of files in the current
working directory. A few are worth pointing out:

• diag.exe - an ELF formatted binary of the test

• mem.image - a memory image with the test code and asso-
ciated infrastructure (boot code, interrupt handlers, etc.)
embedded at correct addresses

• midas.log - a log of the assembler run

• symbol.tbl - the symbol table for the test.

The next step is to invoke the Verilog simulator to run the sim-
ulation. In the case of Synopsys VCS, this consists of calling
the simv executable compiled when building the model with a
number of command line arguments. First, sims verifies that
the specified simulation model has been built (simv exists for
Synopsys VCS). The next step is to extract the addresses of the
good and bad trap handler routines from the test symbol table.
This is another step that is skipped for unit tests. Good and bad
traps are special types of traps that are used in tests to indicate

21



a pass or fail. The addresses are passed to the simulation model
and are used to determine when the test is finished and whether
it passed or failed.

Finally, the Verilog simulation command line is constructed based
on the configuration files and any sims command line options.
For assembly and C tests, the good and bad trap handler ad-
dresses and the assembly test are passed to the Verilog simula-
tor, although the test is actually read into the simulator from
the mem.image file generated by the assembler. For unit tests,
the source and sink memory files to be used are passed directly
from the sims command line to the simulator command line
through the -sim run args=OPTION argument. Lastly, the com-
mand is executed to kick off the simulation, logging the output
to sim.log.

After the simulation completes, any user or model specified post-
processing commands are run. For instance, the manycore sim-
ulation model, i.e. for assembly and C tests, has two post-
processing scripts by default. The manycore simulation model
specifies in its configuration script to run perf and regreport

through the -post process cmd=COMMAND argument. The for-
mer extracts the performance from the simulation log to perf.log
and the latter extracts the pass/fail status of the test to status.log.
These steps are not necessary but provide nice summaries of
what happened in a test. Additional post-processing steps can
be added by the user either via the command line or configura-
tion file.

As always, the sims command for running a simulation generates
a sims.log file which logs all output during the execution of the
command and a history.sims file which logs the history of sims
commands executed from a directory.

5.3 Running Advanced Simulations Using the manycore Simulation Model

While the previous sub-section discussed running rather trivial
simulations, this section goes into running more advanced sim-
ulations with the manycore simulation model. The unit testing
simulation models are generally rather trivial and do not have
many simulation run options other than which unit test is to be
run. Therefore, unit tests simulation models will not be discussed
in this sub-section.

As mentioned previously, there are many potential arguments to

22



sims simulation run commands for assembly and C tests, most
of them dictated by the manycore simulation model top-level
testbench code. In this section we will discuss some of these
arguments and how to construct more complex sims simulation
commands. The sims manpage is provided in Appendix A of
this document for convenience and details all sims arguments.

5.3.1 Specifying Number of Threads and Thread Mapping for a Simulation

For most of the multi-threaded tests in our test suite, you can
specify the total number of software threads and the mapping
from software threads to physical hardware thread units (and
thus cores) for a simulation. By default each core contains two
hardware thread units in OpenPiton, therefore each core can be
mapped with up to two threads. The total number of software
threads can be configured by adding -midas args=-DTHREAD COUNT=thread count

into simulation run commands. By default, thread mapping
starts with the first core in an incremental order. E.g. if the num-
ber of threads is set to 4 and there are two hardware thread units
per core, the default mapping will map those 4 threads to the first
two cores. Thread mapping can be changed to a regular strided
pattern by adding -midas args=-DTHREAD STRIDE=stride number

to the simulation run command. The stride number defines the
number of hardware thread units that are skipped between two
neighboring threads. It is set to 1 by default meaning no skip-
ping. E.g. if the number of threads is 2 and the stride num-
ber is 2, those 2 threads will be mapped to the first hardware
thread unit of the first core and the first hardware thread unit of
the second core. Arbitrary thread mappings can be managed by
adding the -midas args=-DTHREAD MASK=thread mask option to
the simulation run command. After you specify those numbers,
you also need to set the argument -finish mask=mask vector

to notify which hardware thread units should read good trap for
the test to be considered passing. The finish mask is a bit vec-
tor in hex. Previously there were four hardware threads in an
OpenSPARC T1 core, each corresponding to one bit in the finish
mask. By default in OpenPiton, we reduce the number of hard-
ware threads to two per core, but we still leave the bit position for
the other two removed threads for better configurability (Notice:
there are no unused bit positions left for -DTHREAD MASK).
Therefore, in the above example of 4 threads mapped into the
first two cores, the finish mask should be set to 33. In another
example of 2 threads with a stride number of 2, the finish mask

23



should be set to 11. More complex examples are shown below:

Running 32 threads on 16 cores:

-midas arg=-DTHREAD COUNT=32 -finish mask=3333333333333333

Running 16 threads on 16 cores, allocating one thread to each
core (one to each of the first hardware thread units):

-midas arg=-DTHREAD COUNT=16 -midas args=-DTHREAD STRIDE=2

-finish mask=1111111111111111

Running 2 threads on 16 cores, allocating one on the first core
and the other on the last core:

-midas arg=-DTHREAD COUNT=16 -midas args=-DTHREAD MASK=40000001

-finish mask=1000000000000001

5.3.2 Specifying Monitor Arguments for a Simulation

There are several monitors for different components of the Open-
Piton chip. Each monitor sets a number of rules and any vio-
lation will trigger a test failure. Some monitors can be turned
off for a simulation. E.g. The execution unit monitor can be
turned off by adding -sim run args=+turn off exu monitor=1

in the run command. The monitor for L2 cache can be disabled
by adding -sim run args=+disable l2 mon into simulation run
commands. This is useful when testing special ASI functions of
L2 or you want to stop displaying L2 monitor information during
simulations.

5.3.3 Debugging Simulations with sims

The default manycore simulation outputs a lot of useful infor-
mation into the simulation log, which includes register updates,
L1.5 and L2 cache pipelines, NoC messages and memory accesses.
This information can be helpful to debug simple errors, especially
memory system related errors. More comprehensive debugging
process can be done by checking detailed waveforms via Synop-
sys DVE tool. This can be enabled by adding -debug all flag
for simulation model build and -gui flag for simulation run. As
yet, this has only been tested with Synopsys VCS.

5.4 Running a Regression Suite

A regression is a set of simulations/tests which run on the same
simulation model. The regression suite can run all tests with

24



Table 4: OpenPiton Regression Suites
Name Description

all tile1 passing All single tile tests
tile1 mini a mini set of single tile tests

all tile2 passing All 2-tile tests
tile2 mini a mini set of 2-tile tests

tile4 All 4-tile tests
tile8 All 8-tile tests
tile16 All 16-tile tests
tile36 All 36-tile tests
tile64 All 64-tile tests

a single run command and generate a summarized report for
all tests. Table 4 lists major regression suites that can be
run in OpenPiton. For a complete list of all regresson suite,
please check the file $PITON_ROOT/piton/verif/diag/master_

diaglist_princeton.

New regression groups can be created by modifying $PITON_

ROOT/piton/verif/diag/master_diaglist_princeton, which
defines the regressions. A regression is defined in this file by a
XML tag, where tests listed between the opening and closing
tags are part of that regression. The name of the regression is
defined by the text in the XML tag followed by the simulation
model to be used for the regression and any default sims argu-
ments for all tests in the regression in the opening tag. Tests are
listed between the open and closing tags in the format <test_

id> <sims_args>, where <test id> is a unique ID for that test
in the regression and <sims args> define the arguments to sims

to run that test. A simple regression definition is shown below. It
defines a regression called princeton test with regression-wide
sims arguments -sys=manycore -x_tiles=1 -y_tiles=1 and
includes a single test with the ID princeton-test-test and
sims arguments princeton-test-test.s. While this test defi-
nition is simple, as the only sims argument is the test assembly
file, multiple sims arguments can be included in the sims args

section of the test definition.

<princeton-test -sys=manycore -x tiles=1 -y tiles=1>

princeton-test-test princeton-test-test.s

</princeton-test>

25



In order to run a regression, specify the -group=<regression name>

and -sim type=<simulator> argument to sims, where <regression name>

is the name of the regression defined by the XML tags in $PITON_

ROOT/piton/verif/diag/master_diaglist_princeton. sim type=vcs

specifies that Synopsys VCS should be used for the simulation,
which takes the place of -vcs build and -vcs run arguments
when building and running a normal test. Similarly, -sim type=ncv

specifies Cadence Incisive, -sim type=msm specifies Mentor Mod-
elSim and -sim type=msm specifies Icarus Verilog. The -slurm -

sim_q_command=sbatch arguments can also be provided to the
regression run command to launch each test in a SLURM batch
job, allowing for tests to be run in parallel. Below is an example
of how to run the tile1 mini regression group.

• VCS: sims -sim type=vcs -group=tile1 mini

• Incisive: sims -sim type=ncv -group=tile1 mini

• ModelSim: sims -sim type=msm -group=tile1 mini

• Icarus: sims -sim type=icv -group=tile1 mini

The simulation model will be built and all simulations will be
run sequentially (unless the SLURM arguments are provided).
In addition to the simulation model directory, a regression di-
rectory will be created in the $MODEL DIR directory in the form
<date> <id> which contains the simulation results. The <id>

field is just a counter that starts at zero and is incremented for
each regression run on that <date>. In order to process the re-
sults from each test of the regression and obtain a summary of
the regression results, the regreport command should be used,
providing the regression directory ($MODEL_DIR/<date>\_<id>)
as an argument as below.

cd $MODEL DIR/<date> <id>

regreport $PWD > report.log

5.5 Running a Continuous Integration Bundle

Continuous integration bundles are sets of simulations, regression
groups, and/or unit tests. The simulations within a bundle are
not required to have the same simulation model, which is the
main advantage of continuous integration bundles over regression
groups. The continuous integration tool requires a job queue
manager (e.g. SLURM) to be present on the system in order
parallelize simulations. As yet, the continuous integration tool

26



Table 5: OpenPiton Continuous Integration Bundles
Name Description

git push a compact set of tests designed to run
for every git commit

git push lite a light version of git push with fewer
tests

nightly a complete set of tests designed to run
every night

pal tests a set of PAL tests
all tile1 passing All single tile tests
tile1 mini a mini set of single tile tests
all tile2 passing All 2-tile tests
tile2 mini a mini set of 2-tile tests
tile4 All 4-tile tests
tile8 All 8-tile tests
tile16 All 16-tile tests
tile36 All 36-tile tests
tile64 All 64-tile tests

only supports Synopsys VCS. Table 5 lists major bundles that
can be run in OpenPiton.

New bundles can be created by adding XML files in the path
$PITON_ROOT/piton/tools/src/contint/. A bundle usually
consists of multiple regression groups. The format is XML based
and quite straightforward, please refer to the contint README at
$PITON_ROOT/piton/tools/src/contint/README and/or our ex-
isting XML files such as git push.xml for the detailed format.

In order to run a continuous integration bundle, specify the --

bundle=<bundle_name> argument to contint, where <bundle name>

refers to the name of the continuous integration bundle you would
like to run, specified in the XML files. Below is an example of
how to run the git push bundle.

contint --bundle=git push

All jobs will be submitted to the SLURM job scheduler by de-
fault. After all simulation jobs complete the results will be ag-
gregated and printed to the screen. The individual simulation re-
sults will be stored in a new directory in the form contint <bundle

name> <date> <id> and can be reprocessed later to view the ag-
gregated results again. This can be done with the --check results

27



and --contint dir=contint <bundle name> <date> <id> ar-
guments to contint. The --bundle=<bundle name> argument
must also be provided when re-checking results.

The exit code of contint indicates whether all tests passed
(zero exit code) or at least one test failed (non-zero exit code).
This can be useful for using contint in a continuous integration
framework like Jenkins.

5.6 Determining Test Coverage

Coming Soon. This documentation will be included in a future
release. Please email openpiton@princeton.edu or post to the
OpenPiton discussion groups if you have questions on this topic.

28

openpiton@princeton.edu


A sims manpage

sims - Verilog rtl simulation environment and regression

script

SYNOPSIS

sims [args ...]

where args are:

NOTE: Use "=" instead of "space" to separate args and

their options.

SIMULATION ENV

-sys=NAME

sys is a pointer to a specific testbench

configuration to be built and run. a config

file is used to associate the sys with a set

of default options to build the testbench and

run diagnostics on it. the arguments in the

config file are the same as the arguments

passed on the command line.

-group=NAME

group name identifies a set of diags to run

in a regression. The presence of this

argument indicates that this is a regession

run. the group must be found in the diaglist.

multiple groups may be specified to be run

within the same regression.

-group=NAME -alias=ALIAS

this combination of options gets the diag run

time options from the diaglist based on the

given group and alias. the group must be

found in the diaglist. the alias is made up

of diag_alias:name_tag. only one group should

be specified when using this command format.

OPENPITON ARGUMENTS

-sys=manycore -x_tiles=X -y_tiles=Y

this combination of options for the

"manycore" simulation model specifies a 2D

29



mesh topology of tiles, with X tiles in the x

dimension and Y tiles in the y dimension. If

-x_tiles and -y_tiles is not specified, the

default is X=1 and Y=1. The maximum value for

both X and Y is 1024.

-ed_enable

enable Execution Drafting in each core.

-ed_sync_method=SYNC_METHOD

sets the Execution Drafting thread

synchronization method (TSM) to SYNC_METHOD.

Possible values for SYNC_METHOD are "rtsm",

"stsm", or "htsm". The default is "stsm".

Please refer to the Execution Drafting paper

or OpenPiton documentation for more

information on TSMs.

-ibm

use simulation models from the IBM SRAM

compiler. These are not provided with the

OpenPiton download, but if the user has

access to download them, there is

infrastructure for them to be dropped in and

used. Please refer to the OpenPiton

documentation for more information on this

option.

-xilinx

use simulation models from Xilinx IP, e.g.

BRAMS, clock gen, etc., to simulate the FPGA

version of OpenPiton. The Xilinx IP is not

provided with the OpenPiton download, but if

the user has access to download them, there

is infrastructure for them to be dropped in

and used. If you are planning to synthesize

OpenPiton to an FPGA, it recommended to use

this option for simulation. Please refer to

the OpenPiton documentation for more

information on this option.

-ml605

use block memories generated by ISE tools,

required for ML605 evaluation board. Can be

used only in conjunction with -xilinx option.

30



-artix7

use block memories generated by Vivado tool

chain, required for Artix7 evaluation board.

Can be used only in conjunction with -xilinx

option.

-vc707

use block memories generated by Vivado tool

chain, required for Xilinx VC707 evaluation

board. Can be used only in conjunction with

-xilinx option.

-debug_all

a shortcut for -vcs_build_args=-debug_all. In

Synopsys VCS, this causes the simulation

model to be built with the -debug_all flag.

This allows for the simulation to be run in

the DVE environment, convenient for waveform

viewing and debugging.

-gui

a shortcut for -sim_run_args=-gui. In

Synopsys VCS, this causes the simulation to

be run within the DVE environment, convenient

for waveform viewing and debugging. When

building the simulation model specified by

the -sys option, the -debug_all argument must

have been passed to sims.

-slurm -sim_q_command=sbatch

specifies simulations should be submitted

with the Simple Linux Utility for Resource

Management (SLURM) and run in parallel. The

-sim_q_command=sbatch must also be specified.

The -jobcommand_name argument may also be

used to specify the job name.

VERILOG COMPILATION RELATED

-sim_type=vcs/ncv/icv

defines which simulator to use vcs, ncverilog,

or icarus, defaults to vcs.

-sim_q_command="command"

31



defines which job queue manager command to use

to launch jobs. Defaults to /bin/sh and runs

simulation jobs on the local machine.

-ncv_build/-noncv_build

builds a ncverilog model and the vera

testbench. defaults to off.

-ncv_build_args=OPTION

ncverilog compile options. multiple options

can be specified using multiple such arguments.

-icv_build/-noicv_build

builds an icarus model and the vera testbench.

defaults to off.

-icv_build_args=OPTION

icarus compile options. multiple options can

be specified using

multiple such arguments.

-vcs_build/-novcs_build

builds a vcs model and the vera testbench.

defaults to off.

-vcs_build_args=OPTION

vcs compile options. multiple options can be

specified using multiple such arguments.

-clean/-no_clean

wipes out the model directory and rebuilds it

from scratch. defaults to off.

-vcs_use_2state/-novcs_use_2state

builds a 2state model instead of the default

4state model. this defaults to off.

-vcs_use_initreg/-novcs_use_initreg

initialize all registers to a valid state

(1/0). this feature works with -tg_seed to set

the seed of the random initialization. this

defaults to off.

-vcs_use_fsdb/-novcs_use_fsdb

32



use the debussy fsdb pli and include the dump

calls in the testbench. this defaults to on.

-vcs_use_vcsd/-novcs_use_vcsd

use the vcs direct kernel interface to dump

out debussy files. this defaults to on.

-vcs_use_vera/-novcs_use_vera

compile in the vera libraries. if -vcs_use_ntb

and -vcs_use_vera are used, -vcs_use_ntb wins.

this defaults to off.

-vcs_use_ntb/-novcs_use_ntb

enable the use of NTB when building model

(simv) and running simv. if -vcs_use_ntb and

-vcs_use_vera are used, -vcs_use_ntb wins.

this defaults to off.

-vcs_use_rad/-novcs_use_rad

use the +rad option when building a vcs model

(simv). defaults to off.

-vcs_use_sdf/-novcs_use_sdf

build vcs model (simv) with an sdf file.

defaults to off.

-vcs_use_radincr/-novcs_use_radincr

use incremental +rad when building a vcs model

(simv). defaults to off. this is now

permanently disabled as synopsys advises

against using it.

-vcs_use_cli/-novcs_use_cli

use the +cli -line options when building a vcs

model (simv). defaults to off.

-flist=FLIST

full path to flist to be appended together to

generate the final verilog flist. multiple

such arguments may be used and each flist will

be concatenated into the final verilog flist

used to build the model.

-graft_flist=GRAFTFILE

33



GRAFTFILE is the full path to a file that

lists each verilog file that will be grafted

into the design. the full path to the verilog

files must also be given in the GRAFTFILE.

-vfile=FILE

verilog file to be included into the flist

-config_rtl=DEFINE

each such parameter is place as a ‘define in

config.v to configure the model being built

properly. this allows each testbench to select

only the rtl code that it needs from the top

level rtl file.

-model=NAME

the name of a model to be built. the full path

to a model is

/tank/mmckeown/research/projects/piton/openpiton/build/model/build_id.

-build_id=NAME

specify the build id of the model to be

built. the full path to a model is

/tank/mmckeown/research/projects/piton/openpiton/build/model/build_id.

VERA COMPILATION RELATED

VERA and NTB share all of the vera options except a

few. See NTB RELATED.

-vera_build/-novera_build

builds the vera/ntb testbench. default on.

-vera_clean/-novera_clean

performs a make clean on the vera/ntb

testbench before building the model. defaults

to off.

-vera_build_args=OPTION

vera testbench compile time options. multiple

options can be specified using multiple such

commands. these are passed as arguments to the

gmake call when building the vera testbench.

-vera_diag_args=OPTION

34



vera/ntb diag compile time option multiple

options can be specified using multiple such

arguments.

-vera_dummy_diag=NAME

this option provides a dummy vera diag name

that will be overridden if a vera diag is

specified, else used for vera diag compilation

-vera_pal_diag_args=OPTION

vera/ntb pal diag expansion options (i.e. "pal

OPTIONS -o diag.vr diag.vrpal") multiple

options can be specified using multiple such

arguments.

-vera_proj_args=OPTION

vera proj file generation options. multiple

options can be specified using multiple such

arguments.

-vera_vcon_file=ARG

name of the vera vcon file that is used when

running the simulation.

-vera_cov_obj=OBJ

this argument is passed to the vera Makefile

as a OBJ=1 and to vera as -DOBJ to enable a

given vera coverage object. multiple such

arguments can be specified for multiple

coverage objects.

NTB RELATED

NTB and VERA share all of the vera options except

these:

-vcs_use_ntb/-novcs_use_ntb

enable the use of NTB when building model

(simv). if -vcs_use_ntb and -vcs_use_vera

are used, -vcs_use_ntb wins. defaults to off.

-ntb_lib/-nontb_lib

enables the NTB 2 part compile where the

Vera/NTB files get compiled first into a

libtb.so file which is dynamically loaded by

35



vcs at runtime. The libtb.so file is built

by the Vera Makefile, not sims. Use the

Makefile to affect the build. If not using

-ntb_lib, sims will build VCS and NTB

together in one pass (use Makefile to affect

that build as well). default is off.

VERILOG RUNTIME RELATED

-vera_run/-novera_run

runs the vcs simulation and loads in the vera

proj file or the ntb libtb.so file. defaults

to on.

-vcd/-novcd

signals the bench to dump in VCD format

-vcdfile=filename

the name of the vcd dump file. if the file

name starts with a "/", that is the file

dumped to, otherwise, the actual file is

created under ’tmp_dir/vcdfile’ and copied

back to the current directory when the

simulation ends. use "-vcdfile=‘pwd‘/filename"

to force the file to be written in the current

directory directly (not efficient since

dumping is done over network instead of to a

local disk).

-vcs_run/-novcs_run

runs the vcs simulation (simv). defaults to

off.

-sim_run_args=OPTION

sim runtime options. multiple options can be

specified using multiple such arguments.

-vcs_finish=TIMESTAMP

forces vcs to finish and exit at the specified

timestamp.

-fast_boot/-nofast_boot

speeds up booting when using the ciop model.

this passes the +fast_boot switch to the simv

36



run and the -sas_run_args=-DFAST_BOOT and

-midas_args=-DFAST_BOOT to sas and midas. Also

sends -DFAST_BOOT to the diaglist and config

file preprocessors.

-debussy/-nodebussy

enable debussy dump. this must be implemented

in the testbench to work properly. defaults to

off.

-start_dump=START

start dumping out a waveform after START

number of units

-stop_dump=STOP

stop dumping out a waveform after STOP number

of units

-fsdb2vcd

runs fsdb2vcd after the simulation has

completed to generate a vcd file.

-fsdbfile=filename

the name of the debussy dump file. If the file

name starts with a "/", that is the file

dumped to, otherwise, the actual file is

created under ’tmp_dir/fsdbfile and copied

back to the current directory when the

simulation ends. Use

"-fsdbfile=‘pwd‘/filename" to force the file

to be written in the current directory

directly (not efficient since dumping is done

over network instead of to a local disk).

-fsdbDumplimit=SIZE_IN_MB

max size of Debussy dump file. minimum value

is 32MB. Latest values of signal values making

up that size is saved.

-fsdb_glitch

turn on glitch and sequence dumping in fsdb

file. this will collect glitches and sequence

of events within time in the fsdb waveform.

beware that this will cause the fsdb file size

to grow significantly this is turned off by

37



default. this option effectively does this:

this is turned off by default. this option

effectively does this:

setenv FSDB_ENV_DUMP_SEQ_NUM 1

setenv FSDB_ENV_MAX_GLITCH_NUM 0

-rerun

rerun the simulation from an existing

regression run directory.

-post_process_cmd=COMMAND

post processing command to be run after vcs

(simv) run completes

-pre_process_cmd=COMMAND

pre processing command to be run before vcs

(simv) run starts

-use_denalirc=FILE

use FILE as the .denalirc in the run area.

Default copies ’env_base/.denalirc’

VLINT OPTIONS

-vlint_run/-novlint_run

runs the vlint program. defaults to off.

-vlint_args

vlint options. The <sysName>.config file

can contain the desired vlint arguments,

or they can also be given on the command

line. Typically the -vlint_compile is

given on the command line.

vlint also requires identification of a

rules deck.

-illust_run

run illust after x2e

-illust_args

illust options

-vlint_top

top level module on which to run vlint

38



VERIX OPTIONS

-verix_run/-noverix_run

runs the verix program. defaults to off.

-verix_libs

specify the library files to add to the vlist

-verix_args

verix template options. The <sysName>.config

file can contain these desired verix arguments

verix also requires <top>.verix.tmplt in the

config dir.

-verix_top

top level module on which to run verix

ZEROIN RELATED

-zeroIn_checklist

run 0in checklist

-zeroIn_build

build 0In pli for simulation into vcs model

-zeroInSearch_build

build 0in search pli for simulation into vcs

model

-zeroIn_build_args

additional arguments to be passed to the 0in

command

-zeroIn_dbg_args

additional debug arguments to be passed to the

0in shell

SAS/SIMICS RELATED

-sas/-nosas

run architecture-simulator. If vcs_run option

is OFF, simulation is sas-only. If vcs_run

39



option is ON, sas runs in lock-step with rtl.

default to off.

-sas_run_args=DARGS

Define arguments for sas.

TCL/TAP RELATED

-tcl_tap/-notcl_tap

run tcl/expect TAP program. If vcs_run option

is OFF, simulation is tcl-only. If vcs_run

option is ON, tcl runs in lock-step with rtl.

default to off.

NOTE: You _must_ compile with -tcl_tap as

well, to enable to enable functions that are

needed for running with tcl

-tcl_tap_diag=diagname

Define top level tcl/expect diag name.

MIDAS

midas is the diag assembler

-midas_args=DARGS

arguments for midas. midas creates memory

image and user-event files from the assembly

diag.

-midas_only

Compile the diag using midas and exit without

running it.

-midas_use_tgseed

Add -DTG_SEED=tg_seed to midas command line.

Use -tg_seed to set the value passed to midas

or use a random value from /dev/random.

PCI

pci is the pci bus functional model

-pci_args

arguments to be passed in to pci_cmdgen.pl for

generation of a pci random diagnostic.

40



-pci/-nopci

generates a random pci diagnostic using the

-tg_seed if provided. default is off.

-tg_seed

random generator seed for pci random test

generators also the value passed to +initreg+

to randomly initialize registers when

-vcs_use_initreg is used.

SJM

sjm is the Jbus bus functional model

-sjm_args

arguments to be passed in to sjm_tstgen.pl for

generation of an sjm random diagnostic.

-sjm/-nosjm

generates a random sjm diagnostic using the

-tg_seed if provided. default is off.

-tg_seed

random generator seed for sjm random test

generators also the value passed to +initreg+

to randomly initialize registers when

-vcs_use_initreg is used.

EFCGEN

efcgen.pl is a script to generate efuse.img files

(default random), which is used by the efuse controller

after reset. It is invoked by -efc.

-efc/-noefc

generates an efuse image file using the

-tg_seed if provided. default is off. Random

if no -efc_args specified.

-efc_args

arguments to be passed in to efcgen.pl for

generation of an efuse image file. Default is

random efuse replacement for each block.

41



-tg_seed

random generator seed for efcgen.pl script

also the value passed to +initreg+ to randomly

initialize registers when -vcs_use_initreg is

used.

VCS COVERMETER

-vcs_use_cm/-novcs_use_cmd

passes in the -cm switch to vcs at build time

and simv at runtime default to off.

-vcs_cm_args=ARGS

argument to be given to the -cm switch

-vcs_cm_cond=ARGS

argument to be given to the -cm_cond switch.

-vcs_cm_config=ARGS

argument to be given to the -cm_hier switch

-vcs_cm_fsmcfg=ARGS

argument to be given to the -cm_fsmcfg switch

specifies an FSM coverage configuration file

-vcs_cm_name=ARGS

argument to be given to the -cm_name switch.

defaults to cm_data.

DFT

-dftvert

modifies the sims flow to accomodate dftvert.

this skips compiling the vera testbench and

modifies the simv command line at runtime.

MISC

-nobuild

this is a master switch to disable all building

options. there is no such thing as -build to

enable all build options.

-copyall/-nocopyall

42



copy back all files to launch directory after

passing regression run. Normally, only failing

runs cause a copy back of files. Default is off.

-copydump/-nocopydump

copy back dump file to launch directory after

passing regression run. Normally, only failing

runs cause a copy back of non-log files. The

file copied back is sim.fsdb, or sim.vcd if

-fsdb2vcd option is set. Default is off.

-tarcopy/-notarcopy

copy back files using ’tar’. This only works in

copyall or in the case the simulations ’fails’

(per sims’ determination). Default is to use

’cp’.

-diag_pl_args=ARGS

If the assembly diag has a Perl portion at the

end, it is put into diag.pl and is run as a

Perl script. This allows you to give arguments

to that Perl script. The arguments accumulate,

if the option is used multiple times.

-pal_use_tgseed

Send ’-seed=<tg_seed_value> to pal diags. Adds

-pal_diag_args=-seed=tg_seed to midas command

line, and -seed=tg_seed to pal options (vrpal

diags). Use -tg_seed to set the value passed

to midas or use a random value from

/dev/random.

-parallel

when specifying multiple groups for

regressions this switch will submit each

group to Job Q manager to be executed as a

separate regression. This has the effect of

speeding up regression submissions. NOTE:

This switch must not be used with -injobq

-reg_count=COUNT

runs the specified group multiple times in

regression mode. this is useful when we want

to run the same diag multiple times using a

different random generator seed each time or

43



some such.

-regress_id=ID

specify the name of the regression

-report

This flag is used to produce a report of a an

old or running regression. With -group

options, sims produces the report after the

regression run. Report for the previous

regression run can be produced using

-regress_id=ID option along with this option,

-finish_mask=MASK

masks for vcs simulation termination.

Simulation terminates when it hits ’good_trap’

or ’bad_trap’. For multithread simulation,

simulation terminates when any of the thread

hits bad_trap, or all the threads specified by

the finish_mask hits the good_trap. example:

-finish_mask=0xe Simulation will be terminated

by good_trap, if thread 1, 2 and 3 hits the

good_trap.

-stub_mask=MASK

mask for vcs simulation termination.

Simulation ends when the stub driving the

relevant bit in the mask is asserted. This is

a hexadecimal value similar to -finish_mask

-wait_cycle_to_kill=VAL

passes a +wait_cycle_to_kill to the simv run.

a testbench may chose to implement this

plusarg to delay killing a simulation by a

number of clock cycles to allow collection of

some more data before exiting (e.g. waveform).

-rtl_timeout

passes a +TIMEOUT to the simv run. sets the

number of clock cycles after all threads have

become inactive for the diag to exit with an

error. if all threads hit good trap on their

own the diag exits right away. if any of the

threads is inactive without hitting good

trap/bad trap the rtl_timeout will be reached

44



and the diag fails. default is 5000. this is

only implemented in the cmp based testbenches.

-max_cycle

passes a +max_cycle to the simv run. sets the

maximum number of clock cycle that the diag

will take to complete. the default is 30000.

if max_cycle is hit the diag exits with a

failure. not all testbenches implement this

feature.

-norun_diag_pl

Does not run diag.pl (if it exists) after simv

(vcs) run. Use this option if, for some

reason, you want to run an existing assembly

diag without the Perl part that is in the

original diag.

-nosaslog

turns off redirection of sas stdout to the

sas.log file. use this option when doing

interactive runs with sas.

-nosimslog

turns off redirection of stdout and stderr to

the sims.log file. use this option to get to

the cli prompt when using vcs or to see a

truncated sim.log file that exited with an

error. this must be used if you want control-c

to work while vcs is running.

-nogzip

turns off compression of log files before they

are copied over during regressions.

-version

print version number.

-help

prints this

IT SYSTEM RELATED

-use_iver=FILE

full path to iver file for frozen tools

45



-use_sims_iver

For reruns of regression tests only, use

sims.iver to choose TRE tool versions saved

during original regression run

-dv_root=PATH

absolute path to design root directory. this

overrides DV_ROOT.

-model_dir=PATH

absolute path to model root directory. this

overrides MODEL_DIR.

-tmp_dir=PATH

path where temporary files such as debussy

dumps will be created

-sims_config=FILE

full path to sims config file

-env_base=PATH

this specifies the root directory for the

bench environment. it is typically defined in

the bench config file. It has no default.

-config_cpp_args=OPTION

this allows the user to provide CPP arguments

(defines/undefines) that will be used when

the testbench configuration file is processed

through cpp. Multiple options are

concatenated together.

-result_dir=PATH

this allows the regression run to be launched

from a different directory than the one sims

was launced from. defaults to

/tank/mmckeown/research/projects/piton/piton_master/docs/sim_man.

-diaglist=FILE

full path to diaglist file

-diaglist_cpp_args=OPTION

this allows the user to provide CPP arguments

(defines/undefines) that will be used when

46



the diaglist file is processed through cpp.

Multiple options are concatenated together.

-asm_diag_name=NAME

-tpt_diag_name=NAME

-tap_diag_name=NAME

-vera_diag_name=NAME

-vera_config_name=NAME

-efuse_image_name=NAME

-image_diag_name=NAME

-sjm_diag_name=NAME

-pci_diag_name=NAME

name of the diagnostic to be run.

-asm_diag_root=PATH

-tpt_diag_root=PATH

-tap_diag_root=PATH

-vera_diag_root=PATH

-vera_config_root=PATH

-efuse_image_root=PATH

-image_diag_root=PATH

-sjm_diag_root=PATH

-pci_diag_root=PATH

absolute path to diag root directory. sims

will perform a find from here to find the

specified type of diag. if more than one

instance of the diag name is found under root

sims exits with an error. this option can be

specified multiple times to allow multiple

roots to be searched for the diag.

-asm_diag_path=PATH

-tpt_diag_path=PATH

-tap_diag_path=PATH

-vera_diag_path=PATH

-vera_config_path=PATH

-efuse_image_path=PATH

-image_diag_path=PATH

-sjm_diag_path=PATH

-pci_diag_path=PATH

absolute path to diag directory. sims expects

the specified diag to be in this directory.

the last value of this option is the one used

as the path.

47



ClearCase

-clearcase

assume we are in ClearCase environment for

setting DV_ROOT and launching Job Q manager

commands. default is off.

-noclearcase

force clearcase option off

-cc_dv_root=PATH

ClearCase path to design root directory. this

overrides .

ENV VARIABLES

sims sets the following ENV variables that may be used

with pre/post processing scripts, and other internal

tools:

ASM_DIAG_NAME : Contains the assembly diag name.

SIMS_LAUNCH_DIR : Path to launch directory where

sims is running the job.

VERA_LIBDIR : Dir where Vera files are compiled.

DV_ROOT : -dv_root if specifed

MODEL_DIR : -model_dir if specified

TRE_SEARCH : Based on -use_iver, -use_sims_iver

DENALI : User defined

VCS_HOME : User defined

VERA_HOME : User defined

PLUSARGS

+args are not implemented in sims. they are passed

directly to vcs at compile time and simv at runtime. the

plusargs listed here are for reference purposes only.

+STACK_DIMM 32 bits physical address space - default

is 31 bits

+STACK_DIMM +RANK_DIMM 33 bits physical address

space - default is 31 bits

+max_cycle see -max_cycle

48



+TIMEOUT see -rtl_timeout

+vcs+finish see -vcs_finish

+wait_cycle_to_kill see -wait_cycle_to_kill

DESCRIPTION

sims is the frontend for vcs to run single simulations

and regressions

HOWTO

Build models

Build a vcs model using DV_ROOT as design root

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_build

Build a ncverilog model using DV_ROOT as design root

sims -sys=manycore -x_tiles=1 -y_tiles=1 -ncv_build

Build an icarus model using DV_ROOT as design root

sims -sys=manycore -x_tiles=1 -y_tiles=1 -icv_build

Build the vera testbench only using DV_ROOT as design

root

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vera_build

Build a model from any design root

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_build

-dv_root=/home/regress/2002_06_03

Build a graft model from any design root

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_build

-dv_root=/model/2002_06_03

-graft_flist=/regress/graftfile

Build a model and re-build the vera

49



sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_build

-vera_clean

Build a model and turn off incremental compile

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_build

-clean

Build a model with a given name

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_build

-build_id=mymodel

Run models

Run a diag with default model

sims -sys=manycore -x_tiles=1 -y_tiles=1 -vcs_run

diag.s

Run a diag with a specified model

sims -sys=manycore -x_tiles=1 -y_tiles=1

-build_id=mymodel -vcs_run diag.s

Run a diag with debussy dump with default model

sims -sys=manycore -x_tiles=1 -y_tiles=1 -debussy

+dump=cmp_top:0 -vcs_run diag.s

Run regressions

Run a regression using DV_ROOT as design root

sims -group=tile1_mini

Run a regression using DV_ROOT as design root and

specify the diaglist

sims -group=tile1_mini -diaglist=/home/user/my_dialist

Run a regression using any design root

50



sims -group=tile1_mini

-dv_root=/import/design/regress/model/2002_06_03

Run a regression using any design root and a graft model

sims -group=tile1_mini

-dv_root=/regress/model/2002_06_03

-graft_flist=/home/regress/graftfile

B contint manpage

Usage: contint --bundle=<continuous integration bundle>

[options]

Options:

-h, --help Print this usage message

--dryrun Don’t actually run, print

commands

--check_results Do not run simulations,

just check results

--contint_dir=<dir> Specify a name for the

continuous integration

run directory

--cleanup Remove run directories and

model directories when

finished if all tests pass

--inverse Inverts the exit code to

return 0 if all tests

failed and 1 otherwise,

whereas the default is to

return 0 if all tests pass

and 1 otherwise.

C Ubuntu 14.04/16.04 Dependencies and Workarounds

C.1 Dependencies

Here is a inclusive, but possibly not be minimal, list of software
packages for a clean Ubuntu 14.04/16.04 installation:

sudo apt-get install git csh libc6-i386 lib32stdc++6

libstdc++5 libstdc++5:i386 lib32gcc1 lib32ncurses5

lib32z1 libjpeg62 libtiff5 build-essential

libbit-vector-perl libgmp3-dev

There are a few more dependencies that got deprecated in new
Ubuntu distros, of which we will have to install outside of apt-
get. Download these files:

51



http://packages.ubuntu.com/precise/i386/libgmp3c2/download

http://packages.ubuntu.com/precise/amd64/libmng1/download

Then install with the command:

dpkg -i ${downloaded\_libgmp3c2}.deb

dpkg -i ${downloaded\_libmng1}.deb

Last, Ubuntu’s “dash” might be incompatible with some Synop-
sys installations, so revert back to the classic “sh” binary:

sudo dpkg-reconfigure dash

And select “No.”

C.2 VCS simulation workaround

Both Ubuntu 14.04/16.04 come with GCC versions that do not
do circular dependency search when linking static libraries, which
will cause compilation errors like belows:

libvcsnew.so: undefined reference to

‘snpsGroupGetActive’

libvcsnew.so: undefined reference to

‘miHeapProf_init’

libvcsucli.so: undefined reference to

‘printIclBeginMarker’

If you have the above errors, add the following line to $PITON ROOT/piton/tools/src/sims/manycore.config

-vcs_build_args=${VCS_DIR}/linux64/lib/libvcsnew.so

${VCS_DIR}/linux64/lib/libvcsucli.so

${VCS_DIR}/linux64/lib/libsnpsmalloc.so

${VCS_DIR}/linux64/lib/libvcsnew.so

Note: tested with VCS MX L-2016.06.

52



References

[1] Sun Microsystems, Santa Clara, CA, OpenSPARC T1 Pro-
cessor Design and Verification User’s Guide, 2006.

[2] PyHP, “PyHP Official Home Page.” http://pyhp.

sourceforge.net.

53

http://pyhp.sourceforge.net
http://pyhp.sourceforge.net

	1 Introduction
	2 Supported Third-Party Tools and Environments
	2.1 Operating Systems
	2.2 Unix Shells
	2.3 Script Interpreters
	2.4 Job Queue Managers
	2.5 EDA Tools
	2.5.1 Verilog Pre-Processor
	2.5.2 Verilog Simulator


	3 Directory Structure and File Organization
	3.1 Directory Structure
	3.2 Common File Extensions/Naming Conventions

	4 Environment Setup
	5 Simulation
	5.1 Simulation Models
	5.1.1 Types of Simulation Models
	5.1.2 Building a Simulation Model
	5.1.3 Configuring the manycore Simulation Model
	5.1.3.1 Configuring the Number of Tiles
	5.1.3.2 Configuring Cache Parameters


	5.2 Running a Simulation
	5.2.1 Assembly Tests
	5.2.2 C Tests
	5.2.3 Unit Tests
	5.2.4 sims Simulation Run Flow/Steps

	5.3 Running Advanced Simulations Using the manycore Simulation Model
	5.3.1 Specifying Number of Threads and Thread Mapping for a Simulation
	5.3.2 Specifying Monitor Arguments for a Simulation
	5.3.3 Debugging Simulations with sims

	5.4 Running a Regression Suite
	5.5 Running a Continuous Integration Bundle
	5.6 Determining Test Coverage

	A sims manpage
	B contint manpage
	C Ubuntu 14.04/16.04 Dependencies and Workarounds
	C.1 Dependencies
	C.2 VCS simulation workaround

	References

