Opentiian

OpenPiton Synthesis and
Back-end Manual

Wentzlaff Parallel Research Group

Princeton University

openpiton@princeton.edu

Revision History

Revision

1.0
1.1

1.2

Date

04/03/16
10/20/16

05/15/17

Author(s) Description

MM Initial version

MM Minor edits and updates to
Synopsys RM settings

MM Edited to include synthesis

for top-level chip module

i

Contents

Introduction 1

Supported Third-Party Tools and Environments 2
2.1 Job Queue Managers 2
22 EDATools. 2
2.2.1 Verilog Pre-Processor 2
2.2.2 Synthesis 2
2.2.3 Static Timing Analysis 3
2.2.4 RTL to Netlist and Netlist to Netlist Equiv-
alence Checking 3
2.2.5 Place and Route 3
226 GDSII Merge 4
2.2.7 Design Rule and Layout Versus Schematic
Checking 4
2.2.8 Reference Methodology 4
Directory Structure and File Organization 7
3.1 Directory Structure 7
3.2 Common File Extensions/Naming Conventions . . 9
Environment Setup 10

OpenPiton Synthesis and Back-end Flow Overview 11

Patching Synopsys Reference Methodology to Open-
Piton Flow 14

Process Technology Setup 14

Running the OpenPiton Synthesis and Backend
Flow 17

iii

8.1 Checking the OpenPiton Synthesis and Backend
Results 19

9 Running a New Verilog Module Through the Flow 19

References 21

v

List of Figures

1 OpenPiton Synthesis and Back-end Directory Struc-
ture 8

2 OpenPiton Synthesis and Back-end Flow Diagram 11

List of Tables

Common OpenPiton synthesis and back-end file
extensions/naming conventions 9

Process specific synthesis and backend scripts. Ref-
erenced from ${PITON_ROOT}/piton/ tools/synopsys/
script/ 17

OpenPiton Synthesis and Back-end Flow Run Com-
mands 18

OpenPiton Synthesis and Back-end Flow Supported
Modules 19

OpenPiton Synthesis and Back-end Flow Results
Locations. Referenced from module specific synopsys/
directory.o 20

vi

1

Introduction

This document discusses the OpenPiton synthesis and back-end
infrastructure, including static timing analysis (STA), RTL to
netlist and netlist to netlist equivalence checking (RVS, for RTL
vs. schematic), place and route (PAR), design rule checking
(DRC), and layout versus schematic checking (LVS).

The OpenPiton processor is a scalable, configurable, open-source
implementation of the Piton processor, designed and taped-out
at Princeton University by the Wentzlaff Parallel Research Group
in March 2015. The RTL is scalable up to half a billion cores, it
is written in Verilog HDL, and a large test suite (~8000 tests)
is provided for simulation and verification. The infrastructure is
also designed to be configurable, enabling configuration of the
number of tiles, sizes of structures, type of interconnect, etc.
Extensibility is another key goal, making it easy for users to ex-
tend the current infrastructure and explore research ideas. We
hope for OpenPiton to be a useful tool to both researchers and
industry engineers in exploring and designing future manycore
Processors.

The synthesis and back-end support in OpenPiton is designed to
enable users to run their modified OpenPiton designs through a
publicly available tool flow for ASIC prototyping or area, power,
and timing characterizations. It is meant to serve as both a
reference and a starting point and eliminates the need to write
boiler plate scripts. This enables the rapid development of tape-
out or publication ready designs.

This document covers the following topics:

e Supported third-party tools and environments
e Directory structure and file organization

e OpenPiton environment setup

e Synthesis and back-end tool flow overview

e Porting to a specific process technology

e Running Steps of the flow

e Running a new Verilog module through the flow

2 Supported Third-Party Tools and Environments

This section discusses the different third-party tools/environ-
ments that are supported and/or required by OpenPiton. For
supported operating systems (OSs), Unix shells and script in-
terpreters, please see the OpenPiton Simulation Manual. This
section lists tools specific to the synthesis and back-end scripts.
This includes job queue managers and EDA tools.

2.1 Job Queue Managers

2.2 EDA Tools

SLURM (Simple Linux Utility for Resource Management) is op-
tional and all OpenPiton synthesis and back-end scripts support
using it to submit batch jobs. Currently SLURM has been tested
with versions 15.08.8 and 16.05.5.

2.2.1 Verilog Pre-Processor

2.2.2 Synthesis

OpenPiton uses the PyHP Verilog pre-processor (v1.12) to im-
prove code quality /readability and configurability. PyHP allows
for Python code to be embedded into Verilog files between <
%> tags. The Python code can generate Verilog by simply print-
ing to stdout. The PyHP pre-processor executes the Python code
and generates a Verilog file with the Python snippets replaced by
their output on stdout. Verilog files intended to be pre-processed
by PyHP (files with embedded python) are given the file exten-
sion .pyv.v or .pyv.h for define/include files. PyHP is distributed
with the OpenPiton download. Any PyHP Verilog must be run
through the PyHP pre-processor before being synthesized, which
the OpenPiton scripts take care of.

OpenPiton uses Synopsys Design Compiler (DC) in Topograph-
ical mode for synthesis. The OpenPiton synthesis scripts have
been tested with the following DC versions:

o syn_0-2018.06-SP1

We expect the scripts to work with other version with minimal
modifications and hope to support more versions in the future. If

you find that OpenPiton synthesis is stable using another Synop-
sys DC version, please let us know at openpiton@princeton.edu
so we can update the list on our website.

2.2.3 Static Timing Analysis

OpenPiton uses Synopsys Primetime (PT) for static timing anal-
ysis (STA). The OpenPiton STA scripts have been tested with
the following PT versions:

o pt_J-2014.06

We expect the scripts to work with other version with minimal
modifications and hope to support more versions in the future.
If you find that OpenPiton STA is stable using another Synopsys
PT version, please let us know at openpiton@princeton.edu so
we can update the list on our website.

2.2.4 RTL to Netlist and Netlist to Netlist Equivalence Checking

2.2.5 Place and Route

OpenPiton uses Synopsys Formality (FM) for RTL to netlist
and netlist to netlist equivalence checking (RVS, for RTL vs.
schematic). The OpenPiton RVS scripts have been tested with
the following FM versions:

e fm _J-2014.09-SP3

We expect the scripts to work with other version with minimal
modifications and hope to support more versions in the future.
If you find that OpenPiton RVS is stable using another Synopsys
FM version, please let us know at openpiton@princeton.edu so
we can update the list on our website.

OpenPiton uses Synopsys IC Compiler (ICC) for place and route
(PAR). The OpenPiton PAR scripts have been tested with the
following ICC versions:

e icc 1-2013.12-SP4

We expect the scripts to work with other version with minimal
modifications and hope to support more versions in the future. If
you find that OpenPiton PAR is stable using another Synopsys
ICC version, please let us know at openpiton@princeton.edu
so we can update the list on our website.

openpiton@princeton.edu
openpiton@princeton.edu
openpiton@princeton.edu
openpiton@princeton.edu

2.2.6 GDSII Merge

OpenPiton uses Synopsys IC Workbench Edit/View Plus (ICW-
BEV) for merging GDSII designs. The OpenPiton merge GDSII
scripts have been tested with the following ICWBEV versions:

e icwbev_plus_J-2014.06

We expect the scripts to work with other version with minimal
modifications and hope to support more versions in the future.
If you find that OpenPiton merge GDSII is stable using another
Synopsys ICWBEV version, please let us know at openpiton@
princeton.edu so we can update the list on our website.

2.2.7 Design Rule and Layout Versus Schematic Checking

OpenPiton uses Mentor Graphics Calibre for design rule checking
(DRC) and layout versus schematic checking (LVS). The Open-
Piton DRC and LVS scripts have been tested with the following
Calibre versions:

o ixl cal 2013.2_35.25

We expect the scripts to work with other versions with minimal
modifications and hope to support more versions in the future.
If you find that OpenPiton DRC and LVS is stable using another
Synopsys ICWBEV version, please let us know at openpiton@
princeton.edu so we can update the list on our website.

2.2.8 Reference Methodology

The OpenPiton synthesis and back-end flow is based on the Syn-
opsys Reference Methodology (RM). Because of IP issues, the
OpenPiton synthesis and back-end scripts have been released as
a patch to the Synopsys RM. Thus, users will need access to
Synopsys RM in order to make use of the OpenPiton synthesis
and back-end flow. The OpenPiton synthesis and back-end flow
supports patching from the following versions and settings of the
Synopsys RM:

e Synthesis
— DC-RM_0-2018.06
* Settings:
- RTL Source Format: VERILOG

openpiton@princeton.edu
openpiton@princeton.edu
openpiton@princeton.edu
openpiton@princeton.edu

- Physical Guidance: TRUE
- Hierarchical Flow: TRUE
- MCMM Flow: FALSE
- Synopsys Logic Libraries: FALSE
- Multi-Voltage UPF: FALSE
- Clock Gating: TRUE
- XOR Self-Gating: FALSE
- Clock-Gating Interaction: INSERT
- Low-Power Placement: FALSE
- DFT Synthesis: FALSE
- DC Explorer Compatible: FALSE
- Lynx Compatible: RM/RM+
e Static Timing Analysis
— PT-RM_0-2018.06-SP2
x Settings:
- Flow: PT
- Back Annotation Mode: SPEF
- HyperScale: FALSE
- CSS Waveform Propagation: FALSE
- Distributed Multi-Scenario Mode: FALSE
- Multivoltage Scaling Mode: FALSE
- UPF Mode: FALSE

- Clock Gating and Threshold Voltage Group
Reporting: TRUE

- Power Analysis: OFF
- ECO Mode: LOGICAL
- Power-Analysis-driven Power Recovery: FALSE

- Power Mode for Power-Analysis-driven Power
Recovery: TOTAL

- Fix DRC ECO: TRUE

- Fix Max Transition: TRUE

- Fix Max Capacitance: FALSE
- Fix Max Fanout: FALSE

- Fix Noise: FALSE

- Fix Timing ECO: TRUE

- Fix Setup: COMBINATIONAL
- Fix Hold: COMBINATIONAL

- Estimate Unfixible Reason: TRUE

- Fix Leakage ECO: FALSE
- Constraint Analysis: FALSE
- Link to TetraMax: FALSE
- OCV Mode: OFF
- CRPR Mode: FALSE
- Derate Mode: FALSE
- Auto Clock Mux: FALSE
- Save Session: FALSE
- Timing Models: OFF
- Path-Based Analysis: FALSE
- Reports: STANDARD
- Lynx Compatible: RM/RM+
e Place and Route
— ICC-RM_M-2016.12-SP4
* Settings:

- Focus on QoR or Feasibility: QOR
- Multicorner-Multimode (MCMM) Optimiza-

tion: FALSE

- Multivoltage or Multisupply: NONE

- Physical Guidance: TRUE

- Flip Chip Design Style: FALSE
- In-Design Rail Analysis: TRUE
- Zroute: TRUE

- Advanced Node: FALSE

- Concurrent Clock and Data Optimization Flow:
FALSE

- Floorplan Style: DEFAULT

- Design Style: DEFAULT

. Flow Style: ODL

- Lynx Compatible: RM/RM+

We plan to release patches for a larger variety of versions and
settings to increase accessibility, so keep an eye out on www.
openpiton.org for additional supported versions.

3 Directory Structure and File Organization

This section discusses the OpenPiton synthesis and back-end di-
rectory structure and common file extensions. It mainly discusses
this in the context of the synthesis and back-end portion of the
infrastructure. For a more general discussion, see the OpenPiton
Simulation Manual.

3.1 Directory Structure

This section discusses the directory structure within the root di-
rectory of the OpenPiton download specific to the synthesis and
back-end flow. For a discussion of other directories in the Open-
Piton download, please see the OpenPiton Simulation Manual
and/or OpenPiton FPGA Manual. Figure 1 shows the impor-
tant directories in the OpenPiton synthesis and back-end flow
directory structure.

The piton/ directory is the only top-level directory relevant to
the synthesis and back-end flow (no files are generated in the
current working directory, so it is not necessary to use build/).
All of the scripts for the synthesis and back-end flow are located
in piton/. Within piton/, there are two relevant directories:
design/ and tools/.

www.openpiton.org
www.openpiton.org

piton/
design/
| chip/
tools/
calibre/
synopsys/

Figure 1: OpenPiton Synthesis and Back-end Directory Struc-
ture

The design/ directory, as discussed in the OpenPiton Simulation
Manual, houses all of the synthesizeable Verilog RTL design files
for OpenPiton. The design/ directory is broken down into sev-
eral sub-directories to organize RTL for different purposes (see
OpenPiton Simulation Manual), but the only one pertinent to
the synthesis and back-end scripts is chip/, as it contains the
Verilog design files for an OpenPiton chip which will be synthe-
sized and PAR’d. Within chip/ the directory structure follows
major points in the Verilog module design hierarchy.

The synthesis and back-end scripts specific to a module, such
as floorplanning, power /ground network (PGN), and constraints
scripts, are located in directory named synopsys/ under the di-
rectory for that module. For example, the module specific syn-
thesis and back-end scripts for the OpenSPARC T1 core are lo-
cated in piton/design/chip/tile/sparc/synopsys/ while the
top-level RTL for the core (excluding sub-modules) is located in
piton/design/chip/tile/sparc/rtl/. This logically fits with
the design/ directory’s purpose, as the tasks these scripts per-
form are actually part of the design along with the Verilog RTL.

The tools/ directory within piton/, as stated in the OpenPiton
Simulation Manual, contains all of the scripts and tools used in
OpenPiton, including the synthesis and back-end scripts that
are agnostic to a module. These scripts are really what drive
the flow and only call the synthesis and back-end scripts in the
design/ directory for module specific tasks or information. The
module agnostic synthesis and back-end scripts are split into
two subdirectories: calibre/ for DRC and LVS scripts that use
Mentor Graphics Calibre and synopsys/ for all other tasks which
use Synopsys tools.

3.2 Common File Extensions/Naming Conventions

Table 2 lists common file extensions and naming conventions
used in the OpenPiton synthesis and back-end flow and expla-
nations of the files they are used for:

Table 2: Common OpenPiton synthesis and back-end file
extensions/naming conventions

] File extension

‘ Description

.tel

TCL scripts. Call APIs provided by Synopsys
tools” augmented TCL shells.

tpl

Power and ground mesh template files for Syn-
opsys IC Compiler. Called from TCL scripts to
create PGNs.

.excpt

Exception file for synthesis and back-end flow
checking scripts. Each line is a Python regular
expression which creates an exception for an er-
ror or warning found in a log file.

.sh

Bash script.

block.list

List of blocks (Verilog modules) for synthesis
and place and route. Maps a short name to
a directory path and parameters for submitting
SLURM jobs for different modules.

Verilog design files.

.pyv.v

Verilog design files with embedded Python code.
A .pyv.v file is run through the PyHP pre-
processor prior to building simulation models,
generating a .tmp.v file with the embedded
Python code replaced by the output from exe-
cuting it. The .tmp.v file is then used to build
the simulation model.

Amp.v

Temporary Verilog design files generated by the
PyHP pre-processor from .pyv.v files. Python
code embedded in a .pyv.v file is replaced by the
output from executing it in the resulting .tmp.v.

h/.vh

Verilog macro definition files.

.pyv.h/.pyv.vh | Verilog macro definition files with embed-
ded python code. A .pyv.h/.pyv.vh file is
run through the PyHP pre-processor prior
to building simulation models to generate a
tmp.h/.tmp.vh with the embedded Python code
replaced by the output from executing it. The
tmp.h/.tmp.vh file is then included from other
Verilog design files and used in building the sim-
ulation model.

tmp.h/.tmp.vh | Temporary Verilog macro definition files
generated by the PyHP pre-processor from
pyv.h/.pyv.vh files. Python code embedded
in a .pyv.h/.pyv.vh file is replaced by the
output from executing it in the resulting
tmp.h/.tmp.vh.

4 Environment Setup

This section discusses the environment setup for the OpenPiton

synthesis and backend flow. A script is provided, piton/piton_settings.bash
that does most of the work for you, however, some of the envi-

ronment will need to be setup on your own. Below are a list of

steps to setup the OpenPiton environment.

1. The PITON_ROOT environment variable should point to the
root of the OpenPiton package

2. Synopsys and Mentor Graphics tools (see Section 2) need
to be in your PATH environment variable. Generally, this
is accomplished through a script provided with the instal-
lation of the tools or by your system administrator. Note
that you only need the tools on your path for the parts of
the flow you plan to use. For example, if you only plan to
use synthesis, you only need Synopsys Design Compiler in
your PATH variable.

3. Run ”source $PITON_ROOT/piton/piton_settings.bash”
to setup the OpenPiton environment

e Note: A CShell version of this script is provided, but
OpenPiton has not been tested for and currently does
not support CShell.

10

Floorplan/PGN RTL Constraints
4 4

Post-Syn RVS Pass 1 Post-Syn STA Pass 1
Constraints £CO
I I 3
DEF Constraints |, SBPF i
Post-PAR RVS Pass 1 Post-PAR STA Pass 1

Synthesis Pass 2

Tool Legend
Design Compiler

[
B Frimetime
[

Constraints SPEF Gate-level Netlist o
ity
Post-Syn RVS Pass 2 ormality
IC Compiler
Post-Syn STA Pass 2 :I P
I (c Workbench
Constraints €O EV Plus
[caiibre

: ’ ! +
PoSt-PAR
PoSt-PAR 6Dl Constraints [sBpF STA Netlist
Post-PAR RVS Pass 2 LVS Netlist
Merge GDSII Post-PAR STA Pass 2
DSIl

Figure 2: OpenPiton Synthesis and Back-end Flow Diagram

1

There are two environment variables set by the environment
setup script that may be useful while working with OpenPiton:

e DV_ROOT points to $PITON_ROOT/piton
e MODEL DIR points to $PITON_ROOT/build

5 OpenPiton Synthesis and Back-end Flow Overview

This section gives a high level overview of the OpenPiton syn-
thesis and back-end flow. Figure 2 depicts the flow graphically.
The flow is identical to that used to tapeout the Piton ASIC pro-
totype, however references to the specific technology used have
been removed, due to IP issues. This means that the the flow
will not run out of the box without modifications for a specific
process, as discussed in Section 7. Despite this, the flow serves as
a great reference and starting point for those who want to tape-
out an ASIC with OpenPiton or want to do performance, area,
and/or power characterization. In addition, all of the infrastruc-
ture for the flow is seamlessly integrated into OpenPiton (setup
for running modules through the flow, integration into directory
structure, etc.), making it easy to use and modify while using
OpenPiton. We anticipate releasing a version of the tools that
utilize the Synopsys 32/28nm technology library in the future so

11

the flow references a process available to at least academic users.

The OpenPiton synthesis and back-end flow is based on the Syn-
opsys Reference Methodology (RM). Because of IP issues, the
OpenPiton synthesis and back-end scripts have been released as
a patch to the Synopsys RM flow. Thus, users will need access to
the Synopsys RM, however this is most likely not a problem as
the flow is mostly a Synopsys flow, so users will need a Synopsys
license anyways. In addition, users will need to run an additional
step, as described in Section 6, to apply a patch to the Synopsys
RM scripts and end up with the OpenPiton flow. The Synop-
sys RM and tools are available to academic users through the
Synopsys University Program.

Note also that some of the directory structure and script in-
frastructure for the OpenPiton synthesis and back-end flow is
based on the synthesis flow released in the OpenSPARC T1 [1],
although the flow itself is completely different (completely dif-
ferent synthesis scripts).

The OpenPiton synthesis and back-end flow is mainly a Synopsys
tool flow. Figure 2 shows a two-pass flow, however the number of
passes is configurable. Increasing the number of passes improves
the quality of results, but with diminishing returns. The Verilog
RTL along with design constraints are first passed to Synopsys
Design Compiler, which synthesizes a gate-level netlist from the
behavioral RTL. The resulting netlist, along with the constraints,
are passed to Synopsys PrimeTime to perform post-synthesis
static timing analysis (STA). This analyzes the gate-level netlist
against the constraints specified and reports the results. If the
constraints are not met, Synopsys PrimeTime may output an en-
gineering change order (ECO) file, which suggests modifications
to the netlist to meet the constraints. In parallel to STA, Synop-
sys Formality is run, providing the initial RTL and synthesized
RTL for equivalence checking (RVS, for RTL vs. schematic).

The gate-level netlist, constraints, ECO file, and physical floor-
plan (specified by the user) are passed to Synopsys IC Compiler
to perform placement and routing (PAR). However, before PAR,
the ECO modifications are applied to the gate-level netlist to
give Synopsys IC Compiler a better chance of meeting the con-
straints. After PAR is complete, the post-PAR netlist is again
passed to Synopsys PrimeTime, along with the constraints, to
perform STA and check the design against the constraints. Al-
though not shown in the figure, Synopsys PrimeTime may output

12

an ECO file again, which can be fed back into Synopsys IC com-
piler, along with the post-PAR netlist and physical layout library
to apply the ECO. We have found the ECOs from PrimeTime
to be very useful in meeting timing. Synopsys Formality is run
again to check the equivalence of the synthesized and physical
netlists.

The output of this flow is a fully placed and routed design in
GDSII format. If it meets the constraints, design rule check-
ing (DRC) and layout versus schematic checking (LVS) are per-
formed. However, it is likely the constraints may not be met after
the first pass. In this case, results can be improved by perform-
ing the same flow up to this point a second time, while passing
physical information from the output of the first IC Compiler
pass and the ECO from the output of PrimeTime. Any number
of passes through this flow is possible, but we saw diminishing re-
turns after two passes. If constraints are still not met, it may be
the case that the constraints and/or floorplan must be modified.

After a GDSII of the design that meets the constraints is ob-
tained, it must be merged with the GDSII of any third-party IP
to generate the final GDSII. This is done with the Synopsys IC
Workbench EV Plus tool. After the final merged GDSII is gener-
ated, it is passed to Mentor Graphics Calibre for LVS and DRC
checking. DRC requires the GDSII and the DRC deck from the
process development kit. LVS only requires the GDSII and the
post-PAR gate-level netlist.

If DRC and LVS are not met, there are a few things that can
be done. For DRC, going back and changing the original design
constraints or the floorplan can reduce DRC violations. This is
particularly true if this is the first time a module is run through
the flow. It is likely iteration is required to achieve a design that
is not over constrained and can meet DRC. Alternatively, if the
design must fit in the floorplan and constraints specified, DRC
can be fixed manually in the Synopsys IC Compiler graphical
user interface (GUI). Synopsys IC Compiler also has hooks to
import your DRC results and highlight them in the GUI.

We found that LVS violations were generally not caused by the
Synopsys tools performing a functionally incorrect mapping, but
likely due to something the user has done or not thought about.
Examples of this include name collisions between modules and
LVS issues in third-party IP. It really requires diving into the
LVS detailed report and finding where the root problem is. We

13

have almost never found the design or Synopsys tools were the
problem. Note that if the design has DRC errors, you may see
LVS errors as a result. Thus, the LVS result should really only
be considered valid for a DRC clean design.

A final consideration for synthesis and back-end flow is what to
use for the input RTL. If one were to give the full OpenPiton
RTL as input to synthesis, the flow would take an unreasonable
amount of time and may not even complete successfully. For
this reason, the design is generally broken down into hierarchi-
cal blocks. The leaf blocks are run through the flow first, and
imported as black-boxes in the flow for modules higher in the
hierarchy. This is done until the top-level chip is reached. Since
the hierarchy may depend on process technology, design modifi-
cations, etc. the OpenPiton synthesis and back-end scripts make
it easy to modify and define new module hierarchies.

6 Patching Synopsys Reference Methodology to OpenPiton Flow

In order to patch the Synopsys RM flow to the OpenPiton flow,
follow the steps below:

1. Ensure you have downloaded and extracted the correct ver-
sion(s) of the Synopsys RM as discussed in Section 2.

2. Run the synrm_patch script with the -—dc_rm_path=<Path
to DC RM>, --pt_rm path=<Path to PT RM>, and/or --icc_rm path=<P
to ICC RM> options. You can specify anywhere from one to
all of these, but synrm patch will only copy and patch the
scripts for the RMs specified. For example, if you only plan
to run synthesis and STA, not PAR, you can pass only the
--dc_rm_path=<Path to DC RM>and --pt_rm path=<Path
to PT RM> options to synrm_patch.

3. After synrm_patch completes successfully, your OpenPiton
synthesis and back-end flow should be correctly setup. Note
synrm_patch checks the integrity of both the input RMs
and the resulting OpenPiton flow to ensure the final result
is correct.

7 Process Technology Setup

The OpenPiton synthesis and backend scripts make it easy to
port to a specific process technology. Below are a list of files

14

that need to be changed for a new process technology:

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
env_setup.tcl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
process_setup.tcl

e ${PITON_ROOT}/piton/tools/calibre/script/common/calibre_
env

The ${PITON_ROOT}/piton/tools/synopsys/script/common/

env_setup.tcl script should be modified to get environment

variables pointing to locations needed by the back-end flow. There
are a few examples provided in the file, but this usually includes

environment variables that point to directories for standard cell

libraries, process design kits (PDK), etc.

${PITON_ROOT}/piton/tools/synopsys/script/common/process_
setup.tcl is the main location where changes will need to be
made to port the Synopsys portion of the flow to a new process.
This file should use environment variables from ${PITON_ROOT}/
piton/tools/synopsys/script/common/env_setup.tcl to point

to necessary files for the synthesis and back-end flow, including
standard cell libraries, technology files, Milkyway libraries and
other library and design information. The file has directives to
help you fill in the required variables, please see the script itself

for more details.

For DRC and LVS which use Mentor Graphics Calibre, ${PITON_
ROOT}/piton/tools/calibre/script/common/calibre_env pro-
vides all of the process specific setup. Specifically, it provides
paths to LVS and DRC decks for the process as well as any
process specific environment variables needed for DRC or LVS.
Changes to this file are only required if you plan to run DRC
and/or LVS.

Setting up the above three files will allow you to run the flow
through for modules without SRAMs, however it is likely other
changes are required for the design to be appropriate for that
process. For example, the allowed routing metal layers for the
design, the clock frequency, the number of tiles, double via defi-
nitions, power and ground network (PGN) routing, metal layers
used for different purposes, etc. These types of modifications,
which are not required to get the flow running but are required

15

to correctly implement a design for that process, are made in the
following files:

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
design_setup.tcl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
floorplan/common_pgn.tcl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
floorplan/core_pgn_mesh.tpl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
floorplan/common_post_floorplan.tcl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
dbl_via_setup.tcl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
pt_eco_drc_buf.tcl

e ${PITON_ROOT}/piton/tools/synopsys/script/common/
vt_group_setup.tcl

Lastly, modifications may also need to be made to module spe-
cific synthesis and back-end scripts, listed below. The process
specific portions of these scripts include allowed metal layers
and SRAM IP macros for the design, including the necessary
libraries.

e ${PITON_ROOT}/piton/design/chip/tile/sparc/ffu/synopsys/
script/module_setup.tcl

e ${PITON_ROOT}/piton/design/chip/tile/sparc/synopsys/
script/module_setup.tcl

e ${PITON_ROOT}/piton/design/chip/tile/dynamic_node/
synopsys/script/module_setup.tcl

e ${PITON_ROOT}/piton/design/chip/tile/synopsys/script/
module_setup.tcl

Table 3 lists all of the process specific synthesis and backend
scripts we have discussed in this section along with a short de-
scription of the purpose of that file.

16

Table 3: Process specific synthesis and backend scripts. Refer-
enced from ${PITON_ROOT}/piton/ tools/synopsys/script/

Process Specific File Path Description

common/env_setup.tcl Environment variable setup. Gets environment
variables that are used throughout the scripts.

common/process_setup.tcl Main process specific setup file. Includes stan-

dard cell libraries, technology files, layer map-
ping files, Milkyway libraries, etc.

common/calibre_env Calibre process specific setup file. Sets the DRC
and LVS decks and any environment variables
used by these decks.

common/design_setup.tcl Setup variables specific to a design. Includes

things like clock frequency, allowed routing
metal layers, etc.
common/floorplan/common_pgn.tcl Preroutes the power and ground network (PGN)
for modules without SRAMs or other IP macros.
For modules with SRAMs or other TP macros, a
module specific PGN script will be required.
common/floorplan/core_pgn_mesh.tpl Templates for PGN meshes. Called from
common/floorplan/common_pgn.tcl and mod-
ule specific PGN scripts.
common/floorplan/common_post_floorplan.tcl | Post floorplan steps that are common to all mod-
ules. This is usually process specific but is also
sometimes optional. We used this to place cer-
tain cells at a specific density throughout a mod-
ule after floorplanning is complete, per a require-
ment from the foundry.
common/dbl_via_setup.tcl Double via definition script. This is usually pro-
cess specific but is also sometimes optional. Can
define which vias are used for double via inser-
tion.

common/pt_eco_drc_buf.tcl This is also optional, but specifies a list of stan-
dard cell buffers that Synopsys PT can use for
DRC fixing.

common/vt_group_setup.tcl Optional, can group target libraries into thresh-
old voltage groups for reporting. Can generate
a report of what percentage of different groups
were used, useful for knowing things like what
portion of your critical path is made up of the
lowest threshold voltage standard cells.

8 Running the OpenPiton Synthesis and Backend Flow

Now that you have the OpenPiton flow setup (correctly patched)
an you have modified the scripts for porting to a specific process
technology, you are ready to run the flow. Table 4 shows the
different commands used to run different steps of the OpenPiton
synthesis and back-end flow, along with the tool that step uses
and a corresponding script that can check the log files for that
step and notify whether the run passed or failed. Note there are
commands to run each individual step of the flow, as well as a
single command to kick off the whole flow (run sequentially).

The checking scripts are provided for verifications that the step
was run correctly. It does not notify of the result of that step,
but only that the tool ran correctly without errors and warnings.
For example, cdrc will not tell you if DRC passed, it will tell
you if Mentor Graphics Calibre ran DRC without any errors
and warnings. You will need to separately check the reports/
directory inside the module specific synopsys/ directory for the
module you are running through the flow (see Section 8.1). The
checking scripts work by searching the tool log files for ”error”

17

Table 4: OpenPiton Synthesis and Back-end Flow Run Com-

mands

‘ Command ‘ Flow Step ‘ Tool ‘ Checking Script ‘
rsyn Synthesis Synopsys Design Compiler csyn
rsta Static Timing Analysis Synopsys Primetime csta
rrvs RTL vs. Schematic Equivalence Checking | Synopsys Formality crvs
rpar Place and Route Synopsys 1C Compiler cpar
reco Run ECO Synopsys 1C Compiler cpar
merge_gds | Merge GDSII Designs Synopsys IC Workbench Edit/View Plus | cmerge_gds
rdrc Design Rule Checking Mentor Graphics Calibre cdre
rlvs Layout vs. Schematic Checking Mentor Graphics Calibre clvs
rftf Full tool flow All of the above N/A

and "warning”. Along with the checking scripts are .excpt files,
which list exceptions to these errors and warnings as a Python
regular expression on each line. Both module specific and module
agnostic . excpt files may be used to create exceptions (located in
the corresponding synopsys/ directory). These checking scripts
can be useful, as many of the tools will print many warnings that
you may not care about. You may only care about differences in
warnings between a valid run and your current run, which these
tools help greatly with.

Both the tool flow run scripts and checking scripts accept a mod-
ule nickname as input on the command line. The module nick-
name is mapped to the location of the module specific synopsys/
directory, along with some other parameters in ${PITON_ROOT}/
piton/tools/synopsys/block.list. The number of passes the
flow takes for a given module is also specified in this file. The
blocks with module specific flow scripts provided are listed in
Table 5. Note that the ffu and dynamic_node modules are pro-
vided as small standalone examples, but these modules were not
run through the flow standalone when taping out the Piton chip.
The flow used to tape out Piton ran the core ("sparc”) through
the flow, then imported it as a black-box into tile, and the tile
was imported as a black box into the top-level chip. Thus, there
is a sequential dependence between the top-level chip and the
tile and the tile and the core. The hierarchical flow used to tape
out Piton is provided along with the sample standalone ffu and
dynamic_node modules (not black-boxed inside any other hier-
archical designs). Note, only the synthesis scripts are provided
for the top-level chip module. The full tool flow for the top-level
chip will be included in a future release.

Another command line argument that may be passed to the flow
run scripts is —slurm. This will schedule the run step in the
SLURM job queue manager. rftf will actually submit all indi-

18

Table 5: OpenPiton Synthesis and Back-end Flow Supported

Modules
Module Name | Description Purpose
ffu OpenSPARC T1 core floating-point front-end unit | Small module with one SRAM macro
sparc OpenSPARC T1 core Large module with many SRAM macros
dynamic_node | OpenPiton on-chip network router Small module with no IP macros
tile OpenPiton tile Large, hierarchical module with many SRAM macros
chip OpenPiton top-level chip Large, top-level hierarchical module

vidual steps of the flow individually to SLURM, setting depen-
dencies correctly. This exposes more parallelism in the flow. If
-slurm is not provided, the flow step(s) are run sequentially in
the current Unix shell. We hope to support different job queue
managers in the future, or potentially GNU Parallel, for greater
accessibility.

8.1 Checking the OpenPiton Synthesis and Backend Results

9 Running a New

Table 6 shows the locations where the results should be checked
for each step of the flow. For example, where would you look for
timing results after running STA? Or where would you find viola-
tions after running DRC? This information is all provided in the
table and understanding the results should be rather straight-
forward. One note on rlvs is that the result file will actually
contain two results. A result at the top of the file, and another
result midway down the file (result will be obvious, it says ”in-
correct” or ”correct”). Always check the second result in the file.
The first results will always be incorrect (in our experience).

Verilog Module Through the Flow

Coming Soon. This documentation will be included in a future
release. Please email openpiton@princeton.edu or post to the
OpenPiton discussion groups if you have questions on this topic.

19

openpiton@princeton.edu

Table 6: OpenPiton Synthesis and Back-end Flow Results Loca-
tions. Referenced from module specific synopsys/ directory.

’ Command ‘Ihﬁuhs Location

rsyn reports/dc_shell, reports/dc_shell_passx

rsta reports/pt_shell, reports/pt_shell_dc_
pass*, reports/pt_shell_icc_passx*

rrvs reports/fm_shell, reports/fm_shell_dc_
pass*, reports/fm_shell_icc_passx*

rpar reports/icc_shell, reports/icc_shell_
pass*

reco reports/eco_shell, reports/echo_shell_
pass*

merge_gds | results/

rdrc reports/<design_name>.drc.summary (bot-
tom of file)

rlvs reports/<design_name>.lvs.report (second
result)

20

References

[1] Sun Microsystems, Santa Clara, CA, OpenSPARC T1 Pro-
cessor Design and Verification User’s Guide, 2006.

21

	1 Introduction
	2 Supported Third-Party Tools and Environments
	2.1 Job Queue Managers
	2.2 EDA Tools
	2.2.1 Verilog Pre-Processor
	2.2.2 Synthesis
	2.2.3 Static Timing Analysis
	2.2.4 RTL to Netlist and Netlist to Netlist Equivalence Checking
	2.2.5 Place and Route
	2.2.6 GDSII Merge
	2.2.7 Design Rule and Layout Versus Schematic Checking
	2.2.8 Reference Methodology

	3 Directory Structure and File Organization
	3.1 Directory Structure
	3.2 Common File Extensions/Naming Conventions

	4 Environment Setup
	5 OpenPiton Synthesis and Back-end Flow Overview
	6 Patching Synopsys Reference Methodology to OpenPiton Flow
	7 Process Technology Setup
	8 Running the OpenPiton Synthesis and Backend Flow
	8.1 Checking the OpenPiton Synthesis and Backend Results

	9 Running a New Verilog Module Through the Flow
	References

