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Extension Using NoCs
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P-Mesh NoC Connected I/O and 
Accelerators
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P-Mesh NoC: packet format

CHIPID: Highest bits indicate whether the destination is on-
chip or off-chip, the rest of the bits indicates the chip ID

XPOS: The position of the destination tile in the X dimension
YPOS: The position of the destination tile in the Y dimension
FBITS: The router output port to the destination
PAYLOAD LENGTH: The number of payload packets
RESERVED: Reserved Bits used by higher-level protocols.
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P-Mesh NoC: .h files

piton/design/include/network_define.h
Defines the header flits b63-22
(all except messageid, tag, and options 1)

piton/design/include/define.vh
defines the rest
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Cache Coherence Protocol

Directory-based MESI coherence Protocol

- Four-hop message communication (no direct communication 
between private L1.5 caches)

- Uses 3 physical NoCs with point-to-point ordering to avoid 
deadlock

- The directory and L2 are co-located but state information are 
maintained separately

- Silent eviction in E and S states

- No need for acknowledgement upon write-back of dirty lines 
from L1.5 to L2, but writeback guard needed in some cases.
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Memory Hierarchy Datapath
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NoC Messages
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Backup Slides

9



Coherence Transaction Example
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Coherence Transaction Example (2)
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Coherence Transaction Example (3)
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Adding to OpenPiton

• AXI-Lite

• Wishbone

• Interfacing with the Network on Chip
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Hooking up an AXI-Lite device
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Interfacing with the Networks-on-Chip

1.Packet format
– Highlighting key packet fields

2.Definition files
– .h files

3.Instantiations in Verilog design
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NoC: packet format

64-bit flits
1 packet header (64b) + X packet payload flits 

(64b * X)
Ex: Cache request from L1.5 to L2

Header flit + req. address flit + metadata 
flit
Ex: Cache response from L2 to L1.5

Header flit + 2x data flits (16B cache line)
Ex: Instruction cache response

Header flit + 4x data flits (32B cache line)
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NoC: instantiations

piton/design/chip/rtl/chip.v.pyv
Chip-wide connections between tiles
Auto generated using PYHP
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NoC: instantiations
piton/design/chip/tile/rtl/tile.v.pyv

Instantiation of NoC1/2/3
piton/design/chip/tile/rtl/tile.v.pyv

Selectable between router and 
crossbar design
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Cache Coherence Protocol

Directory-based MESI coherence Protocol

- Four-hop message communication (no direct communication 
between private L1.5 caches)

- Uses 3 physical NoCs with point-to-point ordering to avoid 
deadlock
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Cache Coherence Protocol (2)

Directory-based MESI coherence Protocol

- The directory and L2 are co-located but state information are 
maintained separately
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Cache Coherence Protocol (3)

Directory-based MESI coherence Protocol

- Silent eviction in E and S states

- No need for acknowledgement upon write-back of dirty lines 
from L1.5 to L2
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Example: Add an on-chip accelerator

1. Implement the NoC interface for the accelerator

2. Design and implement the control flow for the accelerator

– Use interrupt packets to init and stop the accelerator

– Use special load and stores to config the accelerator

– Follow the coherence protocol if a coherence cache is 
maintained

3. Connect the accelerator to NoCs and assign it a new tile ID

4. Modify the OS code to init the accelerator if needed

5. Write tests to test the accelerator
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