
OpenPiton in Action

Princeton University

OpenPit

http://openpiton.org

http://openpiton.org/


Extension Using NoCs

2



P-Mesh NoC Connected I/O and 
Accelerators

3

DRAM DRAM

Deserializer

Serializer

DMA

Buffer Accel

Tile

1
0

 G
ig

ab
it

 E
th

er
n

et



P-Mesh NoC: packet format

CHIPID: Highest bits indicate whether the destination is on-
chip or off-chip, the rest of the bits indicates the chip ID

XPOS: The position of the destination tile in the X dimension
YPOS: The position of the destination tile in the Y dimension
FBITS: The router output port to the destination
PAYLOAD LENGTH: The number of payload packets
RESERVED: Reserved Bits used by higher-level protocols.

4

RESERVED



P-Mesh NoC: .h files

piton/design/include/network_define.h
Defines the header flits b63-22
(all except messageid, tag, and options 1)

piton/design/include/define.vh
defines the rest

5



Cache Coherence Protocol

Directory-based MESI coherence Protocol

- Four-hop message communication (no direct communication 
between private L1.5 caches)

- Uses 3 physical NoCs with point-to-point ordering to avoid 
deadlock

- The directory and L2 are co-located but state information are 
maintained separately

- Silent eviction in E and S states

- No need for acknowledgement upon write-back of dirty lines 
from L1.5 to L2, but writeback guard needed in some cases.

6



Memory Hierarchy Datapath

7

Private 
L1.5

Distributed 
shared 

L2

Off-chip
Chipset

NoC1

NoC2

NoC3

NoC1

NoC2

NoC3



NoC Messages

8

L1.5 L2
L1.5/

Memory

NoC1 NoC2

NoC2 NoC3

In order to avoid deadlock, NoC3 messages will never be blocked

Load
Store

Ifill
…

Downgrade
Inv

Mem Req
…

DG ack
Inv ack

Mem Reply
…

Load Ack
Store Ack

…



Backup Slides

9



Coherence Transaction Example

10

Core 1

I → E

Core 2

I

I → E

Memory

L1.5 L1.5

L2❶
Load

❷Mem Req ❸Mem
Reply

❹ Data Ack

Core 1 Core2

Ld



Coherence Transaction Example (2)

11

Core 1

E → I

Core 2

I → M

E → M

Memory

L1.5 L1.5

L2 ❶ Store

❷
Downgrade

❸ DG Ack

❹ Data Ack

Core 1 Core2

Ld
St



Coherence Transaction Example (3)

12

Core 1

I

Core 2

M → I

M → I

Memory

L1.5 L1.5

L2 ❶
WbGuard

❷Writeback

Core 1 Core2

Ld
St

Wb



Adding to OpenPiton

• AXI-Lite

• Wishbone

• Interfacing with the Network on Chip

13



Hooking up an AXI-Lite device

14



Interfacing with the Networks-on-Chip

1.Packet format
– Highlighting key packet fields

2.Definition files
– .h files

3.Instantiations in Verilog design

15



NoC: packet format

64-bit flits
1 packet header (64b) + X packet payload flits 

(64b * X)
Ex: Cache request from L1.5 to L2

Header flit + req. address flit + metadata 
flit
Ex: Cache response from L2 to L1.5

Header flit + 2x data flits (16B cache line)
Ex: Instruction cache response

Header flit + 4x data flits (32B cache line)

16



NoC: instantiations

piton/design/chip/rtl/chip.v.pyv
Chip-wide connections between tiles
Auto generated using PYHP

17



NoC: instantiations
piton/design/chip/tile/rtl/tile.v.pyv

Instantiation of NoC1/2/3
piton/design/chip/tile/rtl/tile.v.pyv

Selectable between router and 
crossbar design

18



Cache Coherence Protocol

Directory-based MESI coherence Protocol

- Four-hop message communication (no direct communication 
between private L1.5 caches)

- Uses 3 physical NoCs with point-to-point ordering to avoid 
deadlock

19

Req
I->S

Dir
M->S

ReqRd

AckDt

Owner
M->S

FwdRdAck

FwdRd

L1.5 L2 L1.5



Cache Coherence Protocol (2)

Directory-based MESI coherence Protocol

- The directory and L2 are co-located but state information are 
maintained separately

20

L2 State Dir State Tag Data Sharer List

…



Cache Coherence Protocol (3)

Directory-based MESI coherence Protocol

- Silent eviction in E and S states

- No need for acknowledgement upon write-back of dirty lines 
from L1.5 to L2

21

Req
S->I

Req
E->I

Req
M->I

Dir
M->I
E->I

WbGuard

Wb



Example: Add an on-chip accelerator

1. Implement the NoC interface for the accelerator

2. Design and implement the control flow for the accelerator

– Use interrupt packets to init and stop the accelerator

– Use special load and stores to config the accelerator

– Follow the coherence protocol if a coherence cache is 
maintained

3. Connect the accelerator to NoCs and assign it a new tile ID

4. Modify the OS code to init the accelerator if needed

5. Write tests to test the accelerator

22


