Getting to Work with OpenPiton

Princeton University

http://openpiton.org
FPGA Prototyping
Supported Development Boards

Boards supported by toolchain:

- Xilinx VC707
- Digilent Genesys2
- Digilent NexysVideo
- Digilent Nexys4DDR

* doesn’t have DDR controller and FPU
Comparison of Supported Boards

<table>
<thead>
<tr>
<th>Development Board, FPGA name, Part</th>
<th>Core Clock (1 core)</th>
<th>Max # of Cores</th>
<th>DDR Type, Size, Data Width</th>
<th>Price (nonacademic/academic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xilinx VC707 Virtex-7 XC7VX485T-2FFG1761C</td>
<td>67 MHz</td>
<td>4</td>
<td>DDR3 1 GB 64 bits</td>
<td>$3,495</td>
</tr>
<tr>
<td>Digilent Genesys2 Kintex-7 XC7K325T-2FFG900C</td>
<td>50 MHz</td>
<td>2</td>
<td>DDR3 1GB 32 bits</td>
<td>$1,299/$600</td>
</tr>
<tr>
<td>Digilent NexysVideo Artix-7 XC7A200T-1SBG484C</td>
<td>29 MHz</td>
<td>1</td>
<td>DDR3 512MB 16 bits</td>
<td>$490/$250</td>
</tr>
<tr>
<td>Digilent Nexys 4 DDR Artix-7 XC7A100T-ACSG324C</td>
<td>29MHz</td>
<td>1</td>
<td>DDR2 128MiB 16 bits</td>
<td>$320/$160</td>
</tr>
</tbody>
</table>
Prototype Architecture

Digilent Genesys2
I/O Interfaces

DDR controller:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test
 \((DMW\ -\ Direct\ Memory\ Write)\)

Ethernet controller:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

*optional
I/O Interfaces

DDR controller*:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master*:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test
 (DMW - Direct Memory Write)

Ethernet controller*:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

*optional
I/O Interfaces

DDR controller:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test
 (*DMW - Direct Memory Write*)

Ethernet controller:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

optional
I/O Interfaces

DDR controller*:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master*:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test

 \((DMW - Direct Memory Write)\)

Ethernet controller*:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

*optional
I/O Interfaces

DDR controller*:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master*:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test *(DMW - Direct Memory Write)*

Ethernet controller*:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

*optional
I/O Interfaces

DDR controller*:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master*:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test
 \((DMW - Direct Memory Write)\)

Ethernet controller*:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

*optional
I/O Interfaces

DDDR controller:
- Xilinx’s MIG 7 IP core
- Configurable data width
- Used as main memory

Wishbone SD Master:
- Up to 2GB SD (microSD) cards
- Storage for HV/OS/tests

UART:
- Terminal I/O
- Loading of assembly test
 (*DMW - Direct Memory Write*)

Ethernet controller:
- Xilinx’s Ethernet Lite MAC IP Core
- Driver from Linux kernel
- 100 Mb/s

*optional
Demo
Setup for Hands-on with FPGA
Setting up Your FPGA Board
Booting Linux

Alive and well ...
Strand start set = 0x1
Total physical mem = 0x40000000
Scrubbing the rest of memory
Number of strands = 0x1
membase = 0x0
memsize = 0x1000000
physmem = 0x40000000
 done
returned status 0x0
setup everything else
Setting remaining details
Start heart beat for control domain

WARNING: Unable to connect to Domain Service providers

WARNING: Unable to get LDOM Variable Updates

WARNING: Unable to update LDOM Variable

OpenPiton, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.x.build_122***PROTOTYPE BUILD***, 1008 MB memory available, Serial #66711024.
[greddy obp #0]
Ethernet address 0:e0:81:5f:2c:ab, Host ID: 83f9edf0.
Booting Linux

Alive and well ...
Strand start set = 0x1
Total physical mem = 0x40000000
Scrubbing the rest of memory
Number of strands = 0x1
membase = 0x0
memsize = 0x1000000
physmem = 0x40000000
done
returned status 0x0
setup everything else
Setting remaining details
Start heart beat for control domain

WARNING: Unable to connect to Domain Service providers

WARNING: Unable to get LDOM Variable Updates

WARNING: Unable to update LDOM Variable

OpenPiton, No Keyboard
Copyright 2007 Sun Microsystems, Inc. All rights reserved.
OpenBoot 4.x.build_122***PROTOTYPE BUILD***, 1008 MB memory available, Serial #66711024.
[greddy obp #0]
Ethernet address 0:e0:81:5f:2c:ab, Host ID: 83f9edf0.

ok boot Linux
ok boot Linux
Boot device: /virtual-devices/disk@110 File and args: Linux
SILO Version 1.4.14

Allocated 64 Megs of memory at 0x40000000 for kernel
FPGA Linux Boot

ok boot Linux
Boot device: /virtual-devices/disk@110 File and args: Linux
SILO Version 1.4.14

Allocated 64 Megs of memory at 0x40000000 for kernel

After ~4 min

Loaded kernel version 4.7.0
Coffee Break
FPGA Linux Boot

[FAILED] Failed to start Journal Service.
See 'systemctl status systemd-journald.service' for details.
[1506.007339] systemd[1]: systemd-journald.service: Unit entered failed state.
[1506.047520] systemd[1]: systemd-journald.service: Failed with result 'timeout'.
[1506.199855] systemd[1]: systemd-journald.service: Service has no hold-off time, scheduling restart.
[1509.358259] systemd[1]: Starting Journal Service...
 Starting Journal Service...
[**] A start job is running for Journal Service (17s / 1min 31s)[1524.683177] systemd[1]: Started Journal Service.
[OK] Reached target System Initialization.
[OK] Listening on D-Bus System Message Bus Socket.
[OK] Reached target Sockets.
[OK] Started Daily apt activities.
[OK] Started Daily Cleanup of Temporary Directories.
[OK] Reached target Timers.
[OK] Reached target Basic System.
 Starting Permit User Sessions...
 Starting OpenBSD Secure Shell server...
 Starting LSB: Start NTP daemon...
 Starting Login Service...
[OK] Started Permit User Sessions.
[FAILED] Failed to start OpenBSD Secure Shell server.
See 'systemctl status ssh.service' for details.
[FAILED] Failed to start Login Service.
See 'systemctl status systemd-logind.service' for details.
[OK] Stopped Login Service.
 Starting Login Service...
[OK] Stopped OpenBSD Secure Shell server.
 Starting OpenBSD Secure Shell server...
 Starting Cleanup of Temporary Directories...
[OK] Started Getty on tty1.
[OK] Started Console Getty.
[OK] Reached target Login Prompts.

Debian GNU/Linux stretch/sid piton-0 console

piton-0 login:
Hands on: Login to the System

```
piton-0 login: root
Password:
Linux piton-0 4.7.0-rc7-openpiton #50 SMP Thu Jan 26 14:43:38 EST 2017 sparc64

The programs included with the Debian GNU/Linux system are free software; the exact distribution terms for each program are described in the individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by applicable law.
root@piton-0:~#
```
Hands on: Login to the System

```
piton-0 login: root
Password: (hidden)
Linux piton-0 4.7.0-rc/-openpiton #50 SMP Thu Jan 26 14:43:38 EST 2017 sparc64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@piton-0:~#```
Suggested Configurations

<table>
<thead>
<tr>
<th></th>
<th>BRAM_TEST</th>
<th>SD with OS + Eth</th>
<th>UART DMW to DDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAM with hardwired test</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM memory controller</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>SD card controller</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>UART 16550</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Ethernet Lite MAC</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>UART support for test streaming</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
### Suggested Configurations

<table>
<thead>
<tr>
<th></th>
<th>BRAM_TEST</th>
<th>SD with OS + Eth</th>
<th>UART DMW to DDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRAM with hardwired test</td>
<td>✔️</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRAM memory controller</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>SD card controller</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>UART 16550</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Ethernet Lite MAC</td>
<td></td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>UART support for test streaming</td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
</tbody>
</table>
Tools

• protosyn
  All encompassing tool for creation of FPGA project and generating programming file
  
  board type, design, config opt

• pitonstream
  Tool for running assembly tests on FPGA

Sources are located at piton/tools/src/proto/
protosyn Flow

Legend:
- Control Flow
- Data Flow
- pyv preprocessor
- Sims script
- Vivado
- input/output files
- flow step conditions

Control Flow

Data Flow

pyv preprocessor

Sims script

Vivado

input/output files

flow step conditions

**RTL**

- *.v.pyv -> *tmp.v
- bram test?
- **YES**
- **NO**
- **YES**
- **NO**
- **YES**
- **NO**
- **YES**
- **NO**
- **YES**

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### mapping test to BRAM

- test_proto.coe

### sims run

- mem.image
- sims.log

### sims build

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA

### create project?

- **NO**
- **YES**

### project creation

### implement?

- **NO**
- **YES**

### synthesis

- mapping, placing, routing, bitstream generation, STA
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5b1
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[ 6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[ 6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
 Listening on LPF/eth0/52:54:00:a1:ec:30
 Sending on LPF/eth0/52:54:00:a1:ec:30
 Sending on Socket/fallback
 DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 4
 DHCPREQuest of 192.168.0.104 on eth0 to 255.255.255.255 port 67
 DHCPOFFer of 192.168.0.104 from 192.168.0.254
 DHCPACK of 192.168.0.104 from 192.168.0.254
 bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5b1
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[ 6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[ 6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCDDISCOVER on eth0 to 255.255.255.255 port 67 interval 4
DHCDDREQUEST of 192.168.0.104 on eth0 to 255.255.255.255 port 67
DHCDOFFER of 192.168.0.104 from 192.168.0.254
DHCDACK of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Put a MAC from your board!

Internet Systems Consortium DHCP Client 4.3.5b1
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[ 6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[ 6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 4
DHCPREQUEST of 192.168.0.104 on eth0 to 255.255.255.255 port 67
DHCPOFFER of 192.168.0.104 from 192.168.0.254
DHCPACK of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5b1
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[ 6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[ 6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCPOFFER of 192.168.0.104 from 192.168.0.254
DHCPOFFER of 192.168.0.104 from 192.168.0.254
DHCPOFFER of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Running protosyn

Usage:
protosyn -b <board_type> [-d <design>] [--bram-test <test_name>] [--from <FPGA flow step>] led <string>]

-b, --board <board_type>
   Name of a supported Xilinx's development board. Available options are:
   vc707
genesys2
nexysVideo
-d, --design <design>
   Name of design module to synthesize. The default is 'system', which synthesizes a full system with chip and chipset. See $DV_ROOT/tools/src/proto/block.list for supported design modules

--bram-test <test_name>
   Name of the test to be mapped into BRAM

--no-ddr
   Implement design without DDR memory

--eth
   Add Ethernet controller to implementation

... more options are in FPGA manual
Running protosyn

Usage:
protosyn -b <board_type> [-d <design>] [--bram-test <test_name>] [--from <FPGA flow step>] led <string>]

-b, --board <board_type>
Name of a supported Xilinx's development board. Available options are:
  vc707
  genesys2
  nexysVideo

-d, --design <design>
Name of design module to synthesize. The default is 'system', which synthesizes a full system with chip and chipset. See $DV_ROOT/tools/src/proto/block.list for supported design modules

--bram-test <test_name>
Name of the test to be mapped into BRAM

--no-ddr
Implement design without DDR memory

--eth
Add Ethernet controller to implementation

... more options are in FPGA manual
Running protosyn

Usage:
protosyn \texttt{-b} \texttt{<board\_type>} \texttt{[\texttt{-d} \texttt{<design>}]} \texttt{[\texttt{--bram\_test} \texttt{<test\_name>}]} \texttt{[\texttt{--from} \texttt{<FPGA} flow step\texttt{>}]}} \texttt{led <string>}

\texttt{-b, --board} \texttt{<board\_type>}
Name of a supported Xilinx's development board. Available options are:
vc707
genesis2
nexysVideo

\texttt{-d, --design} \texttt{<design>}
Name of design module to synthesize. The default is 'system', which synthesizes a full system with chip and chipset. See $DV\_ROOT/tools/src/proto/block.list for supported design modules

\texttt{--bram\_test} \texttt{<test\_name>}
Name of the test to be mapped into BRAM

\texttt{--no\_drr}
Implement design without DDR memory

\texttt{--eth}
Add Ethernet controller to implementation

... more options are in FPGA manual
Running protosyn

Usage:
protosyn -b <board_type> [-d <design>] [--bram-test <test_name>] [--from <FPGA flow step>] led <string>]

-b, --board <board_type>
Name of a supported Xilinx's development board. Available options are:
    vc707
    genesys2
    nexysVideo
-d, --design <design>
Name of design module to synthesize. The default is 'system', which synthesizes a full system with chip and chipset. See $DV_ROOT/tools/src/proto/block.list for supported design modules

--bram-test <test_name>
Name of the test to be mapped into BRAM

--no-ddr
Implement design without DDR memory

--eth
Add Ethernet controller to implementation

... more options are in FPGA manual
Example protosyn run

[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$
Example protosyn run

[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$
Example protosyn run

[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$
Example protosyn run

[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$
Example protosyn run

```
[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$
```
Example protosyn run

[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$
Example protosyn run

```
[openpiton@della2]$ protosyn -b genesys2 -d system --bram-test=uart16550-hello-world.s
INFO: Synthesizing a test: uart16550-hello-world.s
INFO: Compilation started
INFO: Simulation started
INFO: Using core clock frequency: 50 MHz
INFO: Test Passed!
INFO: Starting mapping of a test to BRAM
INFO: Length of image file: 52597
INFO: Checking correctness of section mapping...
INFO: Correct!
INFO: Used 96 out of 16384 blocks of storage
INFO: Creating UART stream for a test...
INFO: Creating project for design 'system' on board 'genesys2'
INFO: Running FPGA implementation down to bitstream generation
INFO: Implementation finished!
INFO: All timing constraints are met!
INFO: Protosyn finished!
[openpiton@della2]$```

FPGA Flow Runtimes

• System including DDR controller
 – ~1.5 hour including IP generation
 – ~40 mins excluding IP generation
FPGA Flow Outputs

```bash
[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl  vivado_18131.backup.jou  webtalk_10265.backup.log
genesys2_system        vivado_18131.backup.log   webtalk_12480.backup.jou
protosyn_logs          vivado_18300.backup.jou   webtalk_12480.backup.log
vivado.jou             vivado_18300.backup.log   webtalk_13970.backup.jou
vivado.log             vivado_26785.backup.log   webtalk_13970.backup.log
vivado_15396.backup.jou vivado_26785.backup.log   webtalk_15500.backup.jou
vivado_15396.backup.log webtalk.jou              webtalk_15500.backup.log
vivado_15433.backup.jou webtalk.log               webtalk_19091.backup.jou
vivado_15433.backup.log webtalk_10265.backup.jou  webtalk_19091.backup.log
[alavrov@della2 system]$ 
```
FPGA Flow Outputs

```
[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl  vivado_18131.backup.jou  webtalk_10265.backup.log
genesys2_system        vivado_18131.backup.log    webtalk_12480.backup.jou
protosyn_logs           vivado_18300.backup.jou    webtalk_12480.backup.log
vivado.jou              vivado_18300.backup.log    webtalk_13970.backup.jou
vivado.log              vivado_26785.backup.log    webtalk_13970.backup.log
vivado_15396.backup.jou vivado_26785.backup.log    webtalk_15500.backup.jou
vivado_15396.backup.log webtalk.jou                 webtalk_15500.backup.log
vivado_15433.backup.jou webtalk.log                 webtalk_19091.backup.jou
vivado_15433.backup.log webtalk_10265.backup.jou    webtalk_19091.backup.log
[alavrov@della2 system]$
```
FPGA Flow Outputs

[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl vivado_18131.backup.jou webtalk_10265.backup.log
genesys2_system vivado_18131.backup.log
protosyn_logs vivado_18300.backup.jou webtalk_12480.backup.jou
vivado.jou vivado_18300.backup.log webtalk_12480.backup.log
vivado.log vivado_26785.backup.jou webtalk_13970.backup.jou
vivado_15396.backup.jou vivado_26785.backup.log webtalk_13970.backup.log
vivado_15396.backup.log webtalk.jou
vivado_15433.backup.jou webtalk.log
vivado_15433.backup.log webtalk_10265.backup.jou
webtalk_19091.backup.log
FPGA Flow Outputs

```
[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl  vivado_18131.backup.jou  webtalk_10265.backup.log
genesys2_system        vivado_18131.backup.log  webtalk_12480.backup.jou
protosyn_logs          vivado_18300.backup.jou  webtalk_12480.backup.log
vivado_jou             vivado_18300_backup.log  webtalk_13970_backup.jou

[alavrov@della2 protosyn_logs]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/protosyn_logs
[alavrov@della2 protosyn_logs]$ ls
implementation.log  make_project.log
[alavrov@della2 protosyn_logs]$ 
```
FPGA Flow Outputs

[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl vivado_18131.backup.jou webtalk_10265.backup.log
genesis2_system vivado_18131.backup.log webtalk_12480.backup.jou
protosyn_logs vivado_18300.backup.jou webtalk_12480.backup.log
vivado.jou vivado_18300_backup.log webtalk_13970_backup.jou

[alavrov@della2 protosyn_logs]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/protosyn_logs
[alavrov@della2 protosyn_logs]$ ls
implementation.log make_project.log
[alavrov@della2 protosyn_logs]$
FPGA Flow Outputs

```
[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl  vivado_18131.backup.jou  webtalk_10265.backup.log
genesis2_system         vivado_18131.backup.log  webtalk_12480.backup.jou
protosyn_logs           vivado_18300.backup.jou  webtalk_12480.backup.log
vivado.jou              vivado_18300_backup.log  webtalk_13970_backup.log

[alavrov@della2 protosyn_logs]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/protosyn_logs
[alavrov@della2 protosyn_logs]$ ls
implementation.log  make_project.log
[alavrov@della2 protosyn_logs]$ 
```
FPGA Flow Outputs

[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl vivado_18131.backup.jou webtalk_10265.backup.log
genesys2_system vivado_18131.backup.log webtalk_12480.backup.jou
protosyn_logs vivado_18300.backup.jou webtalk_12480.backup.log
vivado_jou vivado_18300_backup.log webtalk_13970_backup.log

[alavrov@della2 protosyn_logs]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/protosyn_logs
[alavrov@della2 protosyn_logs]$ ls
implementation.log make_project.log
[alavrov@della2 protosyn_logs]$
FPGA Flow Outputs

```
[alavrov@della2 system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system
[alavrov@della2 system]$ ls
additional_defines.tcl  vivado_18131.backup.jou  webtalk_10265.backup.log
genesys2_system        vivado_18131.backup.log  webtalk_12480.backup.jou
protosyn_logs           vivado_18300.backup.jou  webtalk_12480.backup.log
vivado.jou              vivado_18300.backup.log  webtalk_13970.backup.jou
vivado.log              vivado_26785.backup.log  webtalk_13970.backup.log
vivado_15396.backup.jou vivado_26785.backup.log  webtalk_15500.backup.jou
vivado_15396.backup.log webtalk.jou                webtalk_15500.backup.log
vivado_15433.backup.jou webtalk.log                webtalk_19091.backup.jou
vivado_15433.backup.log webtalk_10265.backup.jou   webtalk_19091.backup.log
```
FPGA Flow Outputs

```
[alavrov@della2 genesys2_system]$ pwd
/tigress/alavrov/chip/openpiton/build genesys2/system genesys2_system
[alavrov@della2 genesys2_system]$ ls
genesys2_system.cache genesys2_system.runs vivado.log
genesys2_system.hw genesys2_system.xpr
 genesys2_system.ip_user_files vivado.jou
[alavrov@della2 genesys2_system]$
```
FPGA Flow Outputs

[alavrov@della2 genesys2_system]$ pwd
/tigress/alavrov/chip/openpitan/build/genesys2/system/genesys2_system
[alavrov@della2 genesys2_system]$ ls
genesys2_system.cache genesys2_system.runs vivado.log
genesys2_system.hw genesys2_system.xpr
genesys2_system.ip_user_files vivado.jou
[alavrov@della2 genesys2_system]$
FPGA Flow Outputs

[alavrov@della2 genesys2_system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system
[alavrov@della2 genesys2_system]$ ls
genesys2_system.cache genesys2_system.runs vivado.log
genesys2_system.hw genesys2_system.xpr
genesys2_system.ip_user_files vivado.jou
[alavrov@della2 genesys2_system]$
FPGA Flow Outputs

```
[alavrov@della2 genesys2_system]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system
[alavrov@della2 genesys2_system]$ ls
genesys2_system.cache
genesis2_system.hw
genesis2_system.ip_user_files
[alavrov@della2 genesys2_system]$ 

[alavrov@della2 genesys2_system.runs]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system/gensys2_system.runs
[alavrov@della2 genesys2_system.runs]$ ls
impl_1  synth_1
[alavrov@della2 genesys2_system.runs]$ 
```
FPGA Flow Outputs

```
[alavrov@della2 impl_1]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system/genesys2_system.runs/impl_1
[alavrov@della2 impl_1]$ ls
ISEWrap.js runme.sh
ISEWrap.sh system.bit
gen_run.xml system.tcl
hrt.txt system.vdi
init_design.pb system_clock_utilization_routed.rpt
opt_design.pb system_control_sets_placed.rpt
place_design.pb system_drc_opted.rpt
project.wdf system_drc_routed.pb
route_design.pb system_drc_routed.rpt
rundef.js system_io_placed.rpt
runme.bat system_opt.dcp
runme.log system_placed.dcp
[alavrov@della2 impl_1]$ 
```
FPGA Flow Outputs

[alavrov@della2 impl_1]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system/genesys2_system.runs/impl_1
[alavrov@della2 impl_1]$ ls
ISEWrap.js runme.sh
ISEWrap.sh system.bit
gen_run.xml system.tcl
htr.txt system.vdi
init_design.pb system_clock_utilization_routed.rpt
opt_design.pb system_control_sets_placed.rpt
place_design.pb system_drc_opted.rpt
project.wdf system_drc_routed.pb
route_design.pb system_drc_routed.rpt
rundef.js system.io_placed.rpt
runme.bat system_opt_dcp
runme.log system_placed.dcp
[alavrov@della2 impl_1]$
FPGA Flow Outputs

```
[alavrov@della2 impl_1]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system/genesys2_system.runs/impl_1
[alavrov@della2 impl_1]$ ls
ISEWrap.js runme.sh
ISEWrap.sh system.bit
gen_run.xml system.tcl
htr.txt system.vdi
init_design.pb system_clock_utilization_routed.rpt
opt_design.pb system_control_sets_placed.rpt
place_design.pb system_drc_opted.rpt
project.wdf system_drc_routed.pb
route_design.pb system_drc_routed.rpt
rundef.js system_io_placed.rpt
runme.bat system_opt.dcp
runme.log system_placed.dcp
[alavrov@della2 impl_1]$  
```
FPGA Flow Outputs

```
[alavrov@della2 impl_1]$ pwd
/tigress/alavrov/chip/openpiton/build/genesys2/system/genesys2_system/genesys2_system.runs/impl_1
[alavrov@della2 impl_1]$ ls
ISEWrap.js  runme.sh
ISEWrap.sh  system.bit
gen_run.xml  system.tcl
htr.txt      system.vdi
init_design.pb  system_clock_utilization_routed.rpt
opt_design.pb  system_control_sets_placed.rpt
place_design.pb  system_drc_opted.rpt
project.wdf  system_drc_routed.pb
route_design.pb  system_drc_routed.rpt
rundef.js  system_io_placed.rpt
runme.bat  system_opt.dcp
runme.log  system_placed.dcp
[alavrov@della2 impl_1]$
```
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5b1
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 4
DHCPREQUEST of 192.168.0.104 on eth0 to 255.255.255.255 port 67
DHCP OFFER of 192.168.0.104 from 192.168.0.254
DHCPACK of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Bringing up Network

put a MAC from your board!

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Internet Systems Consortium DHCP Client 4.3.5b1
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCPCONNECT on eth0 to 255.255.255.255 port 67 interval 4
DHCPCONNECT on eth0 to 255.255.255.255 port 67
DHCPOFFER of 192.168.0.104 from 192.168.0.254
DHCPACK of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in 7956855 seconds.
root@piton-0:~#
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0

Put a MAC from your board!

Internet Systems Consortium DHCP Client 4.3.5b1
Copyright 2004-2016 Internet Systems Consortium.
All rights reserved.
For info, please visit https://www.isc.org/software/dhcp/

[6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCPDISCOVER on eth0 to 255.255.255.255 port 67 interval 4
DHCPREQUEST of 192.168.0.104 on eth0 to 255.255.255.255 port 67
DHCPOFFER of 192.168.0.104 from 192.168.0.254
DHCPACK of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Bringing up Network

root@piton-0:~# ifconfig eth0 hw ether 52:54:00:a1:ec:30
root@piton-0:~# dhclient -v eth0
[6527.207484] xilinx_emaclite f026d9b0 eth0: Link is Down
[6529.353806] xilinx_emaclite f026d9b0 eth0: Link is Up - 100Mbps/Full - flow control rx/tx
Listening on LPF/eth0/52:54:00:a1:ec:30
Sending on LPF/eth0/52:54:00:a1:ec:30
Sending on Socket/fallback
DHCDDISCOVER on eth0 to 255.255.255.255 port 67 interval 4
DHCDDREQUEST of 192.168.0.104 on eth0 to 255.255.255.255 port 67
DHCDDOFFER of 192.168.0.104 from 192.168.0.254
DHCDDACK of 192.168.0.104 from 192.168.0.254
bound to 192.168.0.104 -- renewal in -7956855 seconds.
root@piton-0:~#
Example pitonstream Run

root@piton-laptop-2:build# pitonstream -b genesys2 -f tests.txt
UART will be configured for 115200 baud rate
UART DIV Latch value: 27
Press reset button on FPGA
Waiting...

Configuration is complete

Running uart16550-hello-world.s: 1 out of 1 test
Checking correctness of section mapping... Correct!
Used 6610 out of 16777216 blocks of storage
Loading a test... 4%
Example \texttt{pitonstream Run}

```
root@piton-laptop-2:build# \texttt{pitonstream -b genesys2 -f tests.txt}
UART will be configured for 115200 baud rate
UART DIV Latch value: 27
Press reset button on FPGA
Waiting...

Configuration is complete

Running uart16550-hello-world.s: 1 out of 1 test
Checking correctness of section mapping... Correct!
Used 6610 out of 16777216 blocks of storage
Loading a test...
4%
```
Example pitonstream Run

root@piton-laptop-2:build# python -b genesys2 -f tests.txt
UART will be configured for 115200 baud rate
UART DIV Latch value: 27
Press reset button on FPGA
Waiting...

Configuration is complete

Running **uart16550-hello-world.s**: 1 out of 1 test
Checking correctness of section mapping... Correct!
Used 6610 out of 16777216 blocks of storage
Loading a test...

```
uart16550-hello-world.s
```

```
tests.txt" [New] 1L, 24C written
```
Example pitonstream Run

Loading a test...
100%
TEST_OUTPUT >>>
Hi! I'm OpenPiton
<<< END OF TEST OUTPUT
uart16550-hello-world.s : PASSED

===================================
All tests finished

Exiting...

root@piton-laptop-2:build#
Writing OS Image to SD Card
Hands-on with FPGA
Running Tetris on OpenPiton

```
root@openpiton-fpga:~# tetris -bg white
```

Score 000000
Level 00
Lines 000

PRESS KEY

Sum 0000
T 000
S 000
Z 000
O 000
L 000
J 000
I 000

COM5 - PuTTY
Running Tetris on OpenPiton

```bash
root@openpiton-fpga:~# tetris -bg white
```

Score
000000

Level
00

Lines
000

Press Key

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum 0000
Browsing OpenPiton web page on OpenPiton

root@piton-0:~# lynx www.openpiton.org
Browsing OpenPiton web page on OpenPiton

```
root@piton-0:~# lynx www.openpiton.org
```
Browsing OpenPiton web page on OpenPiton

root@piton-0:~# lynx www.openpiton.org

OpenPiton

OpenPiton is the world's first open source, general-purpose, multithreaded, manycore processor and framework. It is based on the Princeton Piton processor which was designed and taped-out in March 2015 by the Princeton Parallel Group. OpenPiton is open source across the entire computing stack, from the hardware to the firmware and software. Researchers and industry experts from many fields can utilize OpenPiton to modify any part of the stack and evaluate their ideas at scale. The hardware can be easily synthesized to FPGA and run an OS and applications at reasonable speeds for realistic evaluations. OpenPiton is designed to be highly configurable, including core count, cache sizes, and NoC topology, enabling it to adapt to different use cases. OpenPiton has an active community of users and is supported by the Princeton Parallel Group. Some of the features of OpenPiton include:

* Open source (GPL core, BSD uncore) manycore
* Written in Verilog HDL
* Scalable up to 1/2 Billion Cores
* Configurable core and uncore

-- press space for next page --