OpenPiton+Ariane: The First Open-Source, SMP Linux-booting RISC-V System Scaling From One to Many Cores

Jonathan Balkind
Katie Lim
Fei Gao
Jinzheng Tu
David Wentzlaff
jbalkind@princeton.edu
katielim@cs.washington.edu
feig@princeton.edu
jinzheng@princeton.edu
wentzlaf@princeton.edu
Princeton Parallel Group, Princeton University
Princeton, New Jersey

Michael Schaffner
Florian Zaruba
Luca Benini
schaffner@iis.ee.ethz.ch
zarubaf@iis.ee.ethz.ch
benini@iis.ee.ethz.ch
Integrated Systems Laboratory, ETH Zurich
Zurich, Switzerland

ABSTRACT
This paper introduces OpenPiton+Ariane, a permissively-licensed open-source framework designed to enable scalable architecture research prototypes. With the recent addition of SMP Linux running on FPGA, OpenPiton+Ariane is the first open-source, SMP Linux-booting RISC-V system that scales from single-core to manycore. OpenPiton+Ariane inherits capabilities from both the Ariane and OpenPiton projects, bringing with it simulation and FPGA emulation infrastructure, as well as synthesis and back-end scripts for ASIC development. The P-Mesh cache system from OpenPiton was enhanced with support for RISC-V atomic operations but remains otherwise unmodified, thus providing a mature, well-validated manycore memory system. Likewise, Ariane’s cache subsystem was adapted to connect to P-Mesh but the core remains otherwise unmodified, which made Linux bring-up straightforward. This paper gives an overview of the system architecture and the modifications that were necessary to join the two open-source projects. Further, we describe the supported simulation and emulation flows and provide FPGA synthesis results for several different system configurations.

CCS CONCEPTS
• Computer systems organization → Reduced instruction set computing; Multicore architectures; • Hardware → Reconfigurable logic and FPGAs; Very large scale integration design.

KEYWORDS
RISC Processors, Computer Architecture, Multicore Architecture, Coherency, Cache

1 INTRODUCTION
Less than one year ago, Ariane was a single-core processor and OpenPiton relied purely on the OpenSPARC T1 core. Through our teams’ mutual interest in building an open-source RISC-V many-core platform, we decided to integrate Ariane and OpenPiton, and we made rapid progress in doing so. Thanks to the thorough validation of the independent systems, it took less than three months to build the combined manycore which could run bare metal tests in simulation without noticeable validation issues. A further two months of work brought us to booting Linux on 4 cores on FPGA. In fact, it took only one day from the first successful Linux boot on a single-core to doing the same with a dual-core system.

The combined OpenPiton+Ariane platform [17], is a permissively-licensed open-source framework designed to enable scalable architecture research prototypes. With the recent addition in release 11 of SMP Linux running on FPGA, OpenPiton+Ariane is the world’s first open-source, SMP Linux-booting RISC-V system that scales from single-core to manycore. This makes OpenPiton+Ariane the ideal RISC-V hardware research platform.

OpenPiton began as the world’s first open-source, general-purpose, multithreaded manycore processor and framework [4]. It leverages the industry-hardened OpenSPARC T1 core [15, 16] with modifications and builds upon it with a scratch-built, scalable uncore (known as P-Mesh) creating a flexible, modern manycore design. OpenPiton provides a complete verification infrastructure of over 8000 tests, is supported by mature software tools, runs full-stack multiuser Debian Linux, and is written in industry standard Verilog. In addition, OpenPiton provides synthesis and back-end scripts for ASIC and FPGA to enable other researchers to bring their designs to implementation. Multiple implementations of OpenPiton have been created including a taped-out 25-core implementation in IBM’s 32 nm process and multiple Xilinx FPGA prototypes [13, 14].

It is on this mature foundation that we built OpenPiton+Ariane. Ariane [22] is a 64-bit RISC-V application processor, which implements the RV64GC ISA. Ariane has been taped-out in multiple technologies including GlobalFoundries’ 22 nm FDSOI process, and is capable of booting Linux single-core. By modifying the L1 cache for Ariane to support the P-Mesh cache-coherence protocol, we built OpenPiton+Ariane into an SMP Linux-booting, RISC-V manycore. OpenPiton+Ariane inherits all of the capabilities of OpenPiton and of Ariane, bringing them together in a single scalable, configurable, and easy-to-use platform ideal for rapid prototyping of ideas.

*Both authors contributed equally to this work.
2 ARCHITECTURE

The OpenPiton processor system is a flexible, tiled architecture that supports different network-on-chip (NoC) topologies to interconnect a configurable number of processor tiles. The default configuration leverages a 2D mesh topology as shown in Figure 1, and the OpenPiton+Ariane release enables the instantiation of an Ariane RISC-V core within the tiles. Each tile further contains a private L1.5 cache, the NoC routers and a shared L2 cache slice. The chipset contains important platform peripherals such as the DDR memory controller, UART, and the RISC-V-specific peripherals.

This paper gives an overview of the architecture and modifications of the Ariane core and P-Mesh cache subsystem in Section 2, followed by an overview of the simulation and emulation environments in Section 3. Current limitations and future improvements are outlined in Section 4.

2.1 RISC-V Core

Ariane is a 64 bit, single-issue, in-order RISC-V core (RV64GC) and its block-diagram is shown in Figure 2. It has support for hardware multiply/divide, atomic memory operations as well as an IEEE compliant Floating Point Unit (FPU). Moreover, it has support for the compressed instruction set extension as well as the full privileged instruction set extension. It implements the 39 bit, page-based virtual memory scheme SV39 and boots Linux single-core on FPGA.

To keep Instruction per Cycle (IPC)-losses moderate due to its six stage pipelined design it has a complete branch-prediction infrastructure. The instruction front-end which includes PC generation and instruction fetch from the private instruction cache is decoupled from the processor’s back-end which consists of the instruction decode, issue, execute and commit stages. The issue stage tracks operand dependencies in a scoreboard and issues decoded and ready instructions in program order to the execute stage. All execution units are ready-hand-shaked and support retiring instructions out-of-order into a lightweight Re-order Buffer (ROB) which commits instructions in issue order to enable precise exception trapping.

The core’s Load Store Unit (LSU) manages all integer and floating-point loads and stores as well as address translation and atomic memory operations. It has a split Translation Lookaside Buffer (TLB) for the instruction fetch and the data port. A hardware Page Table Walker (PTW) transparently manages TLB refills on TLB misses. Loads, stores and PTW requests are served on three different ports on a private, write-through data cache which is described in more detail in Section 2.2. Atomic memory operations bypass the regular load/store path and are handled on a separate interface on the data cache. When the core requests an atomic memory operation, the read copy is invalidated and the L1 data cache (re-)requests the data from the memory system together with the corresponding memory operation. The standard configuration of low-level core parameters that is used in OpenPiton is shown in Table 2.

2.2 Cache Subsystem

The Transaction-Response Interface (TRI) is the interface between the L1 caches in the core and the L1.5 cache of OpenPiton’s P-Mesh cache subsystem. TRI is a generic and simple interface for cores adhering to a write-through cache protocol, and has been developed as part of JuxtaPiton [10, 11], a previous evolution of OpenPiton where T1 cores could be replaced with PicoRV32 cores to build the world’s first open-source, heterogeneous-ISA processor. Since the
other sharers, if any. The read-modify-write process is finished in
the L2 data array with a small atomic ALU we added into the path
used by the existing swap operation. Finally, the old value which
was read from the L2 is returned to the core.

Differently from those fetch-and-op atomic instructions, load-
reserved/store-conditional (LR/SC) is handled within the L1.5. After
receiving an LR, the L1.5 requests an upgrade for the line to the
“M” MESI state and sets the LR/SC flag to high. From then, any
operation that changes the line’s MESI state will clear the LR/SC
flag (e.g. a load from another core which downgrades the MESI
state to “S”). The later SC returns 0 (meaning the store succeeded)
only when the LR/SC flag is still high, otherwise the store fails and
1 is returned.

2.4 Platform Peripherals

The OpenPiton framework supports the following essential plat-
form peripherals:

- **UART**: We use the Xilinx AXI UART16550 IP core, which is
 connected using a P-Mesh to AXI-Lite bridge. It is used both
 for standard serial I/O for interaction with the user and for
 bootloading using pitonstream (as described in section 3.1).
- **SD/SDHC**: The FPGA emulation can boot from our provided
 SD/SDHC controller, which comes from OpenPiton. The con-
 troller is based on an open-source Wishbone controller [6]
 (connected to P-Mesh) and includes a hardware driver to
 initialise the device. The full SD card is then mapped into the
 memory space for straightforward access for OS bootloading.
- **DRAM**: We make use of the FPGA-specific DDR3 and DDR4
 controllers provided by Xilinx, wrapped in a P-Mesh NoC to
 Xilinx interface bridge.
- **Ethernet**: As for OpenPiton, we use the Xilinx AXI Ethernet
 Lite 10/100 MAC in OpenPiton+Ariane. Standalone Ariane
 also supports the lowRISC Ethernet MAC, which is a port
 of Alex Forencich’s GHz RMII design [7, 12]. We have the
 option to switch to the lowRISC Ethernet MAC in future to
 achieve higher bandwidth.

The RISC-V ecosystem specifies a handful of peripherals and addi-
tional core infrastructure which we implement and support in our
system. This includes:

- **Debug**: The RISC-V draft spec v0.13 [19] compliant debug
 module governs external, multi-hart, run-control debug. The
core uses their existing pipeline to facilitate debug function-
ality. An external debug request signal redirects the core to
a “programmable” debug ROM which injects debug instruc-
tions into the core’s pipeline.
The results have been generated with Vivado 2018.2, using OpenPiton r11 / Ariane v4.1 including additional development patches that will be part of upcoming releases.

Table 3: Some of the supported FPGA build configurations. Both cores have the same default cache configuration (see Table 1). The results have been generated with Vivado 2018.2, using OpenPiton r11 / Ariane v4.1 including additional development patches that will be part of upcoming releases.

<table>
<thead>
<tr>
<th>Board Name / FPGA Type</th>
<th>Clock [MHz]</th>
<th>Config</th>
<th>Core Type</th>
<th>FPU</th>
<th>LUTs [k]</th>
<th>Registers [k]</th>
<th>RAM Tiles [+]</th>
<th>DSPs [+]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digilent NexysVideo</td>
<td>30</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>no</td>
<td>95 (71%)</td>
<td>72 (27%)</td>
<td>66 (18%)</td>
<td>16 (2%)</td>
</tr>
<tr>
<td>Artix 7</td>
<td>30</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>yes</td>
<td>110 (82%)</td>
<td>75 (28%)</td>
<td>66 (18%)</td>
<td>27 (4%)</td>
</tr>
<tr>
<td>7a200t6bg484</td>
<td>30</td>
<td>1 x 1</td>
<td>OpenSPARC T1</td>
<td>yes</td>
<td>115 (86%)</td>
<td>96 (36%)</td>
<td>59 (16%)</td>
<td>13 (2%)</td>
</tr>
<tr>
<td>Digilent Genesys2</td>
<td>67</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>no</td>
<td>86 (42%)</td>
<td>72 (17%)</td>
<td>66 (15%)</td>
<td>16 (2%)</td>
</tr>
<tr>
<td>Kintex 7</td>
<td>67</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>yes</td>
<td>99 (49%)</td>
<td>75 (18%)</td>
<td>66 (15%)</td>
<td>27 (3%)</td>
</tr>
<tr>
<td>7k325tfgg900-2</td>
<td>67</td>
<td>1 x 1</td>
<td>OpenSPARC T1</td>
<td>yes</td>
<td>105 (52%)</td>
<td>91 (22%)</td>
<td>59 (13%)</td>
<td>16 (2%)</td>
</tr>
<tr>
<td>Xilinx VC707</td>
<td>60</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>no</td>
<td>141 (69%)</td>
<td>113 (28%)</td>
<td>124 (28%)</td>
<td>16 (4%)</td>
</tr>
<tr>
<td>Virtex 7</td>
<td>60</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>yes</td>
<td>167 (82%)</td>
<td>120 (30%)</td>
<td>124 (28%)</td>
<td>54 (6%)</td>
</tr>
<tr>
<td>7vx485tfgg1761-2</td>
<td>60</td>
<td>2 x 2</td>
<td>Ariane</td>
<td>no</td>
<td>160 (79%)</td>
<td>137 (33%)</td>
<td>112 (25%)</td>
<td>32 (4%)</td>
</tr>
<tr>
<td>Xilinx VCU118</td>
<td>100</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>no</td>
<td>90 (8%)</td>
<td>81 (3%)</td>
<td>88 (4%)</td>
<td>19 (-1%)</td>
</tr>
<tr>
<td>Virtex US+</td>
<td>100</td>
<td>1 x 1</td>
<td>Ariane</td>
<td>yes</td>
<td>103 (9%)</td>
<td>84 (4%)</td>
<td>89 (4%)</td>
<td>30 (-1%)</td>
</tr>
<tr>
<td>xcvu9pflga2104-2L</td>
<td>100</td>
<td>1 x 1</td>
<td>OpenSPARC T1</td>
<td>yes</td>
<td>108 (9%)</td>
<td>100 (4%)</td>
<td>79 (4%)</td>
<td>19 (-1%)</td>
</tr>
</tbody>
</table>

† Without Coherence Domain Restriction [8] in caches.

- **CLINT**: The Core Local Interrupt Controller (CLINT) provides Inter Processor Interrupts (IPI) and a common time-base. Each core has its own timer compare register which triggers an external timer interrupt when it matches the global time-base.
- **PLIC**: The Platform Level Interrupt Controller (PLIC) is an interrupt controller which manages external peripheral interrupts. It provides a context for each privilege level and core. The software can configure different priority thresholds for each context. The PLIC is still subject to official standardisation. However, there is already an implementation including a Linux driver, which is agreed upon.

2.5 Automatic Device Tree Generation

In order to capture the different platform configurations that OpenPiton+Ariane provides, we added an automatic device tree generation script to the PyHP preprocessor from OpenPiton. This script parses an XML description of the system address map and platform peripherals (which is also used to generate the chipset crossbar), and together with the information about the number of cores and the clock frequency it generates a device tree that is compiled and together with the information about the number of cores and the clock frequency it generates a device tree that is compiled and together with the information about the number of cores and the clock frequency it generates a device tree that is compiled and together with the information about the number of cores and the clock frequency it generates a device tree that is compiled and together with the information about the number of cores and the clock frequency it generates a device tree that is compiled

3 SIMULATION & EMULATION PLATFORMS

Ariane plugs into the riscv-tests simulation infrastructure provided in OpenPiton. This handles the building of simulation models with each of the supported simulators (at present, Mentor QuestaSim, Synopsys VCS and Verilator), as well as running one test or an entire test suite against the compiled model. We have enhanced riscv-tests to support compilation of RISC-V assembly and C tests, and the direct use of pre-compiled binaries. The primary bare-metal test suite is the publicly available riscv-tests repository [20]. Beyond bare-metal testing, we also simulate Linux boot for debugging, which takes approximately 4 days to boot for a single core (DRAM reduced to 128MB to speed up the memory initialisation phase in simulation).

3.1 FPGA Flows

The Ariane core option has been integrated into the OpenPiton protosyn build flow and is available for the Digilent Nexys Video and Genesys2 boards, as well as the Xilinx VC707 and VCU118 development boards. The resource consumption of a set of builds with the standard cache configuration and different numbers of cores is shown in Table 3. The LUT distribution for single-core Genesys2 builds is shown in Figure 3. The core amounts to around 22%-41% of the total resources, depending on the actual configuration (Ariane with or without FPU, OpenSPARC T1 with FPU). Further, we note that the T1 is around 23% and 93% larger than Ariane with and
without FPU, respectively. This area difference can be attributed in part to the T1’s register windows and its reliability features6.

pi tonsream is a tool and bootloading option for testing designs on FPGA. The user specifies a set of tests that they want to run, and those are compiled on the host machine and streamed into the memory of the FPGA over the UART link. pi tonsream will run one test at a time and log its output and success or failure.

Since OpenPiton+Ariane is equipped with a RISC-V compliant Debug Module, the FPGA configurations can be in-system debugged via JTAG using, e.g., OpenOCD with GDB. This can also be used as a bootloading option for Linux as an alternative to UART and SD.

3.2 ASIC Flows

OpenPiton is a rare example of an open-source processor which also provides open-source synthesis and back-end scripts for ASIC development. Alongside an ongoing internal effort to refactor the flow to be more process- and tool-generic, we have begun to run the Ariane tile design through the flow. In particular, we have performed synthesis of the core in GlobalFoundries 14 nm technology and are working through the rest of the flow. Once the tile has been fully placed and routed, we intend to release the updated scripts to the community in the same way as for the SPARC-based OpenPiton.

4 ROADMAP

OpenPiton+Ariane is actively being improved and several extensions and features are planned, as described below. We are also open to any input from the community in that regard.

4.1 Software and Testing

- Litmus testing: We have begun to test the implementation of memory consistency using a variant of the open-source litmus/herd/diy suites [1–3], both in simulation and on FPGA. This testing framework is giving us valuable pre-silicon feedback to enable us to avoid memory consistency violations and will be open-sourced once it is mature.
- Torture tests: Another common testing framework is riscv-torture [5] which is used to perform many random tests of a RISC-V processor. Ariane supports this infrastructure, but we have not yet included it in OpenPiton+Ariane.

6Note that on FPGA, we synthesise the T1 only with one hardware thread, thus there is no hardware multithreading overhead.

Figure 3: LUT distribution of single-core builds for the Genesys2 board (Kintex 7k325ffg900-2). The percentages are normalized with respect to the OpenSPARC total size.

4.2 Hardware

- Cache Evolution: The current cache is still parameterised according to the T1 configuration (Table 1), but as we move away from that particular instance, we plan to add further options to OpenPiton. E.g., we plan to add an option to change the cache-line size of all caches to 512 bit as it is done in several other cache-systems today. Further, we plan to optimise the default parameters to provide the optimum configuration in terms of line size, associativity and capacity.
- FPGA Flows: We plan to add support for other FPGA targets such as the BitWare XUPP3R (similar to the VCU118) and Amazon’s AWS F1 platform. Additionally, a RISC-V recreation of PicoPiton [4] fits on the Digilent Nexys A7 (formerly Nexys 4 DDR) Artix-7 100T FPGA and would be very useful for educational purposes.

5 CONCLUSION

We have presented the extensions and modifications that were necessary to bring together Ariane and OpenPiton, and have given an overview of the main characteristics and supported infrastructure of the resulting OpenPiton+Ariane system. The permissive BSD, Apache 2.0 and Solderpad 0.51 licenses enable everyone to freely use this platform - be it to study computer architecture, try out new ideas, or even to develop next-generation processor platforms. Going forward there are still a lot of exciting features and modifications to be incorporated into this platform and we look forward to engaging with the community to make those happen.

ACKNOWLEDGEMENTS

This material is based on research sponsored by the NSF under Grants No. CNS-1823222, CCF-1453112, and CCF-1823032, Air Force Research Laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA) under agreements No. FA8650-18-2-7846, FA8650-18-2-7852, and FA8650-18-2-7862. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of Air Force...
REFERENCES

