
FracDRAM: Fractional Values in Off-the-Shelf DRAM

Fei Gao, Georgios Tziantzioulis, and David Wentzlaff

Department of Electrical and Computer Engineering
Princeton University
Princeton, NJ, USA

feig@princeton.edu, georgios.tziantzioulis@pm.me, wentzlaf@princeton.edu

Abstract—As one of the cornerstones of computing, dynamic
random-access memory (DRAM) is prevalent across digital
systems. Over the years, researchers have proposed modifica-
tions to DRAM macros or explored alternative uses of existing
DRAM chips to extend the functionality of this ubiquitous
media. This work expands on the latter, providing new in-
sights and demonstrating new functionalities in unmodified,
commodity DRAM. FracDRAM is the first work to show
how fractional values can be stored in off-the-shelf DRAM.
We propose two primitive operations built with specially
timed DRAM command sequences, to either store fractional
values to the entire DRAM row or to masked bits in a row.
Utilizing fractional values, this work enables more modules
to perform the in-memory majority operation, increases the
stability of the existing in-memory majority operation, and
builds a state-of-the-art DRAM-based PUF with unmodified
DRAM. In total, 582 DDR3 chips from seven major vendors are
evaluated and characterized under different environments in
this work. FracDRAM breaks through the conventional binary
abstraction of DRAM logic, and brings new functions to the
existing DRAM macro.

Keywords-DRAM; PIM; Processing-with-Memory; Memory
Controller; PUF

I. INTRODUCTION

The stalling of Moore’s Law and end of Dennard scal-

ing have motivated computer architects to investigate non-

traditional media for computing. A prime example of this

is research that investigates using and modifying DRAM, a

ubiquitous tool for storing short term values, as a medium

for computing. To the external user, a DRAM is a matrix of

storage elements where information is stored in one of two

states, zero or one. However, things in the world are not just

black and white, and that holds for DRAM too. This paper

demonstrates how to leverage that “grey part” of DRAM.

Near-memory [1], [2], [3], in-memory [4], [5], [6], [7],

[8], and with-memory-computing [9], [10], [11], [12] are

growing fields driven by the potential to reduce the energy

consumption of data transfer between storage and processing

units, as well as the search for an alternative and ubiquitous

media that can be used for computation and related needs.

This has fueled a reexamination of the operation and design

of DRAM modules at all levels. One direction explored

by prior work, such as Ambit [12] and RowClone [13],

has investigated modifying DRAM macros to enable charge

sharing between rows. A different approach has reexamined

Figure 1: Utilizing a specially timed command sequence to

store fractional values in off-the-shelf DRAM cells.

the operation of unmodified, commodity, DRAM by exploring

how DRAM functions outside of the JEDEC specification.

This reexamination has lead to discoveries such as Compute-

DRAM [14] which has shown that with-memory computation

can be realized in unmodified commodity DRAM modules

by using out-of-specification timed command sequences.

FracDRAM extends the later efforts and provides new

insights and showcases new functionalities in unmodified,

commodity, DRAM. Our work dissects the binary abstraction

that data stored in DRAM cells can only be one or zero.

In reality, this is not the case. Unlike SRAM, whose stable

states are only two, the voltage level of a DRAM cell, which

at its heart is a capacitor, can occupy any level between

ground and Vdd . In fact, the DRAM cell is not always “full”

due to leakage. Previous works have also shown DRAM

working with a voltage lower than Vdd [15], [16], [17], [18]

The main requirement for exploiting this spectrum of

voltages is the capability to set the voltage level with fine

control. Achieving this seems to require a custom DRAM

chip as there is no built-in functionality to set fractional

values in commodity DRAM. However, closer examination

of a DRAM module and its operation shows that in addition

to the circuitry to drive voltage to Vdd or ground, there

is also circuitry to drive voltage to Vdd/2. This circuitry

is used during the PRECHARGE command (Section II).

FracDRAM leverages this key insight and is the first
work to store fractional values in unmodified, commodity
DRAM. FracDRAM demonstrates the ability to generate

three distinguishable states without any modification to

DRAM and that the data-path to store these different voltage

levels already exists in commodity DRAM. FracDRAM is

capable of doing this by using novel timing of DRAM

command sequences.

Building on this key insight, we create primitive operations

that store fractional values to an entire row and to masked

bits within a row. We also propose methods to verify the

885

2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-6654-6272-3/22/$31.00 ©2022 IEEE
DOI 10.1109/MICRO56248.2022.00066

Figure 2: Basic DRAM structure within a sub-array. Shade

amount in the cell represents the charge stored in it.

effectiveness of the primitives, which can be regarded as a

destructive readout of the fractional value, and demonstrate

those operations with unmodified, commercial, DRAM

modules. We explore two use cases in detail: 1 leveraging

fractional values to expand the number of DRAM modules

that can support ComputeDRAM-style majority operations

with increased stability, and 2 , using fractional values to

implement a DRAM-based Physically Unclonable Function

(PUF) in unmodified DRAM with state-of-the-art throughput.

In addition to these examples, the primitives provided in

FracDRAM can be leveraged to characterize DRAM data

retention time, help people understand and reverse-engineer

the “blackbox” design of the DRAM array, potentially

increase the storage density of DRAM, and potentially

support with-memory ternary computation.

The contributions of this work are the following:

• Demonstration of the first successful storage of frac-

tional values in unmodified, commercial, DRAM.
• Utilization of fractional DRAM storage to expand Com-

puteDRAM-style, in-memory, majority operation to a

larger set of DRAM module types.
• Utilization of fractional DRAM storage to enhance the

reliability of existing ComputeDRAM-style majority

operation, reducing the error rate from 9.1% to 2.2%.
• Demonstration of using fractional DRAM storage to

implement a Physically Unclonable Function (PUF) in

unmodified DRAM with state-of-the-art throughput.
• A careful evaluation and characterization of storing

fractional values in DRAM and it’s applications.

II. BACKGROUND

FracDRAM is constructed using specially timed DRAM

command sequences. In this section, we briefly introduce

essential concepts for understanding FracDRAM : the DRAM

structure and cell polarity, basic DRAM commands, and the

multiple-row-activation.

A. DRAM Structure

Dynamic random-access memory (DRAM) consists of

arrays of cells, each of which stores single-bit data using

the voltage level in the cell capacitor. DRAM memory is

hierarchically structured and organized in levels of: ranks,

banks, and sub-arrays. For the purpose of this work we

only focus on the DRAM structure within a sub-array; for

a detailed description of DRAM organization and operation

see: Jacob et al. [19] and Keeth et al. [20].

At the sub-array level, word-lines control the connection

between the cells in a row and the bit-lines; bit-lines can

be connected to all cells in the same column. At the end

of each bit-line, there is a sense-amplifier which can drive

the voltage to Vdd or 0 when enabled, and pass the sensed

voltage to the row buffer for read/write. Figure 2 provides a

graphical representation of the DRAM organization and the

core components of a sub-array.

B. DRAM Commands

The operation of the DRAM module is controlled by

the memory controller (MC). The MC translates high-

level memory access instructions and their addresses to

DRAM commands with detailed row and column addresses.

FracDRAM uses two of the DRAM commands to construct

fractional value storage in commercial DRAMs:

I. PRECHARGE: takes the bank address as an argument

and has two steps. First, all opened rows are closed

by zeroing all word-lines in the target bank, which

disconnects the cells from the bit-lines. Second, all

bit-lines are driven to Vdd/2 as an initial value.

II. ACTIVATE: takes the bank and row addresses as

arguments, and has three steps. First, the target row’s

word-line is raised to high, connecting the cells of the

row directly to the bit-lines. This enables charge sharing

between a cell and its corresponding bit-line, which

influences the voltage of the bit-line to slightly higher

or lower than Vdd/2, depending on the value stored in

the cell initially. At a second step, the sense amplifier

is enabled, which amplifies the value held in the bit-

line and drives the voltage to Vdd or 0. As the cell is

still connected to the bit-line, its original voltage is

recovered. Finally, the output of the activated local row

buffer is transferred to the global row buffer.

Different DRAM commands perform different tasks and

require different timing constraints (i.e., memory cycles)

to complete. It is the MC’s responsibility to issue DRAM

commands with enough idle cycles in between, following

the timing constraints set by the JEDEC standard [21].

C. Cell Polarity: True-Cells vs Anti-Cells

DRAM design has been extensively optimized to improve

its area efficiency. Modern DRAMs reuse another bit-line

as the reference wire to the sense amplifier, as depicted

in Figure 2. Since only one side of the sense amplifier is

connected to the row buffer, the bit-line on the other side

always holds an opposite state as the row buffer which

886

contains the read out value. The cells connected to the bit-

lines on the “row buffer” side are called true-cells, while the

cells connected to the “opposite” bit-lines are called anti-

cells [22]. In true-cells, Vdd is read as a logic one, while

in anti-cells Vdd represents a logic zero. We can identify

anti-cells by pausing the refresh and checking if logic zero

leaks to logic one (true-cells only leak from one to zero).

In section V, we store opposite logic values to anti-cells

by default, so that they physically hold the same voltage

as true-cells. Since they are symmetric, for simplicity, we

assume all cells are true-cells in the remainder of this work.

D. Multiple-Row-Activation

Under nominal operation, at most one row in a bank can

be activated at a given time [21]. However, Gao et al. [14]

demonstrated that multiple rows can be opened in unmodified

DRAMs using a DRAM command sequence that violates

the JEDEC timing constraints. The command sequence that

was used is: ACTIVATE(R1)-PRECHARGE-ACTIVATE(R2),

with 2.5ns per memory cycle and no idle cycles in between.

R1 and R2 are two different row addresses within the same

sub-array. Using the above command sequence, one or more

other rows can be opened together with R1 and R2. The charge

sharing among the cells in three opened rows is utilized to

build a majority-of-three (MAJ3) operation. Olgun et al. [23]

also found that the same command sequence can open four

rows in DDR4 modules.

III. PRIMITIVE OPERATIONS

FracDRAM introduces Frac and Half-m, two novel primi-

tive operations that utilize specially timed DRAM command

sequences to store fractional values in off-the-shelf DRAM

modules. Following, we elaborate on how each primitive

operation is constructed and how it works at a low level. We

explain how we validated that a fractional value is indeed

generated and stored in the DRAM cell in Section IV-B.

A. The Frac Operation

The Frac operation allows us to store fractional values

in an entire row. To construct Frac, we utilize two basic

DRAM commands: ACTIVATE and PRECHARGE. The two

commands need to be issued back-to-back without any

extra cycles in between. At a high level, our goal is to

use the PRECHARGE command to interrupt the process of

row activation, and prevent the sense amplifier from being

enabled.

Fig. 3 shows the voltage level of both the bit-line and the

DRAM cell during Frac: First 1 , we issue a PRECHARGE
command to initialize the bit-line voltage to Vdd/2. The

PRECHARGE command will close the activated row first.

Thus, the bit-line voltage won’t change until at least a

memory cycle later. The initial voltage in the cell capacitor

can be either Vdd or 0; we assume it is Vdd for this example.

Following 2 , we initiate the Frac operation by issuing an

Figure 3: Voltage level of the cell capacitor and the bit-line

during a Frac operation. In order to put all the commands

together, the time scale in the horizontal axis is not even:

step 2 and 3 are in two consecutive cycles, while the time

between step 1 and 2 , step 3 and 4 , is at least 5 cycles.

We assume each memory cycle is 2.5ns.

ACTIVATE to the target row, which raises up the word-line

and connects the cell capacitor to the bit-line. After the charge

sharing, both the cell and the bit-line reach the same voltage

level which is slightly higher than Vdd/2. The equilibrium

voltage is closer to the initial bit-line voltage because the

bit-line capacitance is much larger than the cell’s [13].

In the following cycle, step 3 , we issue a PRECHARGE
command to interrupt the process of row activation before

the sense amplifier is enabled. After that, the cell capacitor

is disconnected from the bit-line while holding a fractional

value; neither Vdd nor 0, but a voltage slightly higher than

Vdd/2. Since we need to wait for the PRECHARGE to finish,

the total latency of a Frac operation is 7 memory cycles

(two command cycles plus five idle cycles).

With a single Frac operation, we manage to store fractional

values in DRAM cells in the same row. However, this

fractional value depends on the initial state in the cell. For

another column where the initial voltage is 0, the resultant

voltage will be something between Vdd/2 and 0. If we want

to make the stored voltage more accurate, closer to Vdd/2,

and independent from the initial value, we can simply issue

multiple Frac operations. At step 4 , when the PRECHARGE
command from the previous Frac is completed, we are ready

to issue another Frac operation. We found that the more

Frac operations we issue, the closer the resulted voltage is to

Vdd/2, and the cell voltage will be more consistent across the

row regardless of the initial value. We evaluate how the initial

cell voltage and the number of Frac operations influence the

final voltage that we generate in section V.

B. The Half-m Operation

Our second technique, Half-m, stores Half values to

masked bits; i.e., it stores a mixture of normal values

and Half values in the same row. In Half-m, instead of

interrupting a single row activation, as we do in Frac, we

use a PRECHARGE command to interrupt the process of a

four-row-activation.

As mentioned in Section II, the sequence ACTIVATE(R1)-

PRECHARGE-ACTIVATE(R2) triggers a multiple-row-

activation. We tested multiple groups of DDR3 modules

887

Figure 4: Voltage level of cell capacitors in three different

columns during a Half-m operation. Lower half of the figure

shows the data layout in the four opened rows. The curves

in the voltage chart correspond to the cell whose outline has

the same color or dotted line.

from SK Hynix, and found that besides opening three rows

at the same time, we can open four rows as well using

specific combinations of R1 and R2. For example, rows 0,

1, 8, 9 can be opened simultaneously by activating row 8

and row 1 back-to-back. QUAC-TRNG [23] also showed

that four-row-activation can be achieved in commodity

DDR4 modules. We construct Half-m by combining

the command sequence of the four-row-activation, and

a trailing PRECHARGE: ACTIVATE(R1)-PRECHARGE-

ACTIVATE(R2)-PRECHARGE.

Fig. 4 shows the cell voltage in three different columns

during a Half-m operation. As we store different initial values

to the four opened rows (R1 to R4), different results (logical 0,

1, and Half value) are generated respectively. Half-m begins

with 1 a PRECHARGE command which closes all the rows

and resets the bit-line voltage. Steps 2 - 4 are essentially

a four-row-activation. As explained in previous works [14],

[23]: The PRECHARGE in step 3 doesn’t have enough time

to close the row, thus R1 remains open. The glitch of the row

decoder further implicitly opens extra rows, R3 and R4, after

we issue ACTIVATE(R2) at 4 . We choose the address of R1

and R2 carefully to make sure that four rows are activated by

the time of step 5 . Consider the cells in the same column of

these four rows, if they all have the same initial value (0 or

1), they will change the bit-line voltage to the same direction

together, and the voltage at step 5 will be close to 0 or

Vdd , as shown with the green and yellow line. If we store

two ones and two zeros in these cells in the beginning, the

final voltage will be close to Vdd/2, similar to the blue lines.

Finally, 5 we issue the last PRECHARGE to prevent the

sense amplifier from being enabled. Since the bit-lines are

disconnected from the cells, the cell voltage stays unchanged.

Without the help from the sense amplifier, both logical one

Table I: Evaluated DRAM chips and their capability of per-

forming Frac, three-row-activation, and four-row-activation.

Group Vendor Freq(MHz) # Chips Frac Three-row-
activation

Four-row-
activation

A SK Hynix 1066 16 �
B SK Hynix 1333 80 � � �
C SK Hynix 1333 160 � �
D SK Hynix 1600 16 � �

E Samsung 1066 32 �
F Samsung 1333 48 �
G Samsung 1600 32 �

H TimeTec 1333 32 �

I Corsair 1333 32 �

J Micron 1333 16

K Elpida 1333 32

L Nanya 1333 32

and zero are not fully recovered to Vdd and 0 as we show in

Fig. 4, thus we call them “weak” ones and zeros. The Half

value is not exactly Vdd/2 either, due to the asymmetry of

those opened rows. But as long as we can distinguish these

three generated values from each other and show that “weak”

ones/zeros behave the same as normal ones/zeros, we could

say that Half-m successfully stores a mixture of zero, one,

and Half value in the same row.

C. Refresh

The fractional value stored in a DRAM cell can be

destroyed by any row activation. Thus, whenever we have a

fractional value stored in the DRAM array, we need to prevent

the issuing of the REFRESH command to rows holding that

fractional value. At the same time, if we also stored normal

Vdd in other columns in the same row, we need to REFRESH
that row to preserve the logical ones. Fortunately, the typical

refresh cycle for a row – 64ms – is long enough for us to

implement applications with fractional values. We only need

to be cautious that REFRESH is not sent in the middle of

the application.

IV. METHODOLOGY

In this section, we detail our experimental setup and our

methodology for verifying the fractional values in off-the-

shelf DRAMs. In our evaluation, we examine a total of

528 DDR3 chips from seven major DRAM vendors. Table I

presents the full list of tested DRAM chips, as well as their

nominal working frequency (speed level), and their capability

of performing different in-memory operations. Among the

in-memory operations, three-row-activation is the prerequisite

of performing ComputeDRAM-style majority operation in

the absence of Frac, and four-row-activation is necessary for

Half-m. We divide the evaluated DRAM chips into 12 groups,

from A to L, based on the vendor and DRAM configuration.

A. Platform

For our evaluation we used two setups with similar

configurations as the one described in ComputeDRAM [14].

888

Figure 5: Evaluation platform including FPGA boards which

the customized memory controller is programmed on.

We used a modified version of the SoftMC [24] software-

controlled memory controller to generate the appropriate

DRAM command sequences with special timing intervals.

Each host computer sends DRAM command sequences to

a Xilinx ML605 FPGA board through the PCIe bus, as

shown in Figure 5. The hardware part of SoftMC, which is

programmed in the FPGA, receives the command sequence

and subsequently issues it to the real DRAM chip with

specified timing. The working frequency of SoftMC is fixed

to 400MHz, which means that the memory cycle is always

2.5ns no matter what speed level the DRAM chip has. Thus,

whenever we mention “memory cycle”, we assume 2.5ns per

cycle.

B. Verification Methodology

Our goal is to demonstrate that a fractional value can

indeed be generated and stored in commodity DRAM cells.

However, the fractional value can not be simply read out

of the DRAM module, as the sense amplifier will destroy

the fractional value during row activation. Thus, we need a

method to verify that the fractional value is there without

actually probing into the cell. We propose two methods to

achieve this: measuring the data retention time and checking

the results of the majority-of-three (MAJ3) operation with

fractional values.

1) Data Retention Time: The charge stored in a DRAM

cell will gradually leak out of the cell capacitor if it’s not

activated for a while. In addition, there is a threshold voltage

for the sense amplifier, below which the voltage level is

regarded as a logical zero. When the voltage drops below

that threshold such that the sense amplifier fails to recognize

the logical one during activation, the data will be lost. The

amount of time that a DRAM cell can hold the data is called

the cell’s retention time. Since the voltage is monotonically

decreasing during the charge leakage, for the same cell, the

higher the initial voltage is, the longer the “retention time”

will be. Based on that, we can measure the retention time,

and use it as an indicator for the starting voltage level in the

cell.

2) MAJ3 operation with fractional value: Another method

to verify the fractional value is to perform MAJ3 operations

with it. Specifically, we perform MAJ3 twice, in both cases

we store the same fractional value in the first two operands,

and then we store different value of ones and zeros in the

third operand. The detailed procedure is as follows:

1) Choose three rows that can be opened at the same time
2) Store fractional value into row R1, R2, and one in R3

3) Perform MAJ3 on R1,R2, R3. Record the result as X1

4) Store fractional value into row R1, R2, and zero in R3

5) Perform MAJ3 on R1,R2,R3. Record the result as X2

The two different MAJ3 results (X1 and X2) can be used to

verify the existence of the fractional value.

The assumption we make is that, if we can store a fractional

value, then we can produce the same fractional value on

different rows in the same DRAM module using identical

operations, and we can reproduce the same fractional value

on the same row multiple times. This assumption can be

proven using the “retention time” method, and we need it

here to simplify the reasoning process. In the procedure

above, we store a fractional value into row R1 and R2 twice,

and we assume they all hold the same voltage Vf rac after step

2 and 4. If we failed to produce the fractional value, in other

words, if Vf rac were still either 0 or Vdd , the MAJ3 result

would be the same as the value we stored in R1 and R2, no

matter what we set in R3. Therefore, if we can ever get the

result of X1 =Vdd and X2 = 0 at the same time, it will prove

that Vf rac is neither Vdd nor 0, but rather a fractional value

close to Vdd/2.

V. EVALUATION

In this section, we present an evaluation and demonstration

of proof-of-concept for the two primitive operations: Frac
and Half-m. Specifically, we utilize the methods described in

Section IV-B (retention time and MAJ3) to demonstrate the

effectiveness of the proposed operations and the existence

of fractional values in an entire DRAM row.

A. Evaluation of Frac: Retention Time Profile

The retention time collection is composed of two parts:

first, we store ones in the entire target row, then we stop

sending any memory commands in order to let the charge

leak out of the cell. The second step is completed when after

time t, we read out the data and record which bits have lost

their data. If a bit holds one after time t1 but loses its data

after time t2, the cell’s retention time is narrowed down to the

(t1, t2) range. Thus, by varying t and repeating the procedure

multiple times, we can construct a profile of the retention

time range of the cells in the target row. This profile shows

how long the data can be preserved in each cell when full

Vdd is stored, serving as a baseline. To evaluate Frac, the

only difference in the procedure is that we issue one to five

Frac operations right after all ones are stored in the target

row, so that the retention time profile after Frac is collected.

To demonstrate our proof-of-concept, we performed a

retention time experiment that included 16 chips from each

of the 12 DRAM groups in Table I. For each DRAM chip, we

randomly sample five rows from each bank to evaluate. The

heatmap in Figure 6 presents the retention time profiles for

the different DRAM groups. Columns present a Probability

889

Figure 6: Change in the retention time as we issue 0-5 Frac operations to different DRAM groups. Each column of the

heatmap represents a Probability Density Function (PDF) of the retention time. According to the change pattern, each

individual cell is divided into three categories. The proportion of each category is shown by the numbers in brackets, as

[long retention time, monotonic decrease, others] respectively. The second category demonstrates our proof-of-concept.

Density Function (PDF) of retention time, whereas rows

represents retention time ranges. Darker shade in the box

means that a larger portion of cells have a retention time

in the corresponding range. DRAM retention time can be

as short as several seconds, but those cells only make up

a tiny portion; less than 10−4 [22]. Therefore, we choose a

relatively large and coarse timescale, classifying the retention

time into six ranges: 0, 0 to 10 minutes, 10 to 30 minutes,

30 to 60 minutes, 1 to 12 hours, and longer than 12 hours.

A zero retention time means that the voltage in that cell

is reduced below the threshold that the circuits regard as

zero in the beginning; i.e., right after we issue the last Frac.

This definition of zero retention time also complies with the

monotonic relationship between the retention time and the

cell voltage.

For groups J, K, and L, sending Frac operations has no

effect in the retention time profile, thus we omit them from

the plot. We speculate that those DRAM chips implement

time checking circuits to prevent different DRAM commands

being executed too close to each other.

For groups A to I, we analyse the change of the retention

time on individual cells as more Frac operations are issued.

According to the change pattern, we divide the cells into

three categories. The cells in the first category have a long

retention time. They are in the bucket of “> 12h” all the

time, even after five Frac operations are sent. The cells in the

second category exhibit a monotonic decrease of retention

time ranges as we issue more Frac operations. This is the

group of cells we are most interested in; the proportion of bits

in this category is shown in bold numbers in Figure 6. The

last category includes the remaining bits, they may exhibit

an increased retention time as we issue Frac, or the retention

time range can not be fixed in the experiment.

The cells in the second category - 55% on average - illus-

trate that Frac operations can reduce the cell’s retention time

incrementally. Given the monotonic relationship between the

retention time and the voltage (discussed in Section IV-B1),

we can further conclude that the Frac operation can reduce the

cell voltage incrementally. According to our understanding

of low-level DRAM circuits, with an initial voltage of Vdd ,

Frac can not generate a voltage lower than Vdd/2, which

is the initial bit-line level, in a DRAM cell. Therefore, the

reduced voltage value must be between Vdd and Vdd/2. The

above leads us to draw two conclusions (for initial value of

all ones): 1 Frac operation can store fractional voltages
in DRAM cells, and 2 consecutive Frac operations lower
the fractional voltage towards Vdd/2. Although the first

category does not contribute to our point, it is not a counter

example either. Those cells just have a retention time longer

than we can profile. The third category exhibits irregular

change patterns in the retention time, however, it only

contains less than 1% of the cells, and we speculate that

the affected cells have intrinsic variable retention time

(VRT) [25], [26].

Despite the insights we extracted from, the retention time

method in itself has several limitations. First, we only proved

our claim on a portion of cells (55% in average). The

main reason for that is the existence of cells that have long

retention times that fall into the “> 12h” range. Extending the

experiment beyond the 12 hour range significantly increases

experimentation time, which makes it impractical to narrow

down the retention time for all the cells. Second, the retention

time of a cell is determined by multiple factors, such as the

process variation, environmental changes, and a small portion

of cells even exhibits variable retention times [25], [26]. If

a fractional value is stored in one cell, it might still have a

longer retention time than another cell which stores a full

Vdd . Third, as charge only leaks from high voltage to ground,

we can only test retention time with an initial value of one.

Based on the above and given the results of our retention

time profiling, we can confidently say that Frac can produce

a fractional value in DRAM chips for most DRAM vendors

and for different positions in a DRAM chip. However, we

still do not know if all of the bits in a row can reliable

reproduce the fractional value, and if Frac works with an

initial value of zero. We need the MAJ3 method to complete

the characterization.

B. Evaluation of Frac: MAJ3 Results

In our second set of experiments, we follow the procedure

described in Section IV-B2. We use the first three rows

in each sub-array and execute the command sequence

890

Figure 7: MAJ3 results as we change the number of Frac
operations we send. (a) and (b) use R1 and R2 to store

fractional values; (c) and (d) use R1 and R3 to store fractional

values. (a) and (c) use all ones as the initial value thus the

fractional values should be between Vdd/2 and Vdd ; (b) and

(d) use all zeros as the initial value thus the fractional values

should be between 0 and Vdd/2.

ACTIVATE(R1)-PRECHARGE-ACTIVATE(R2), where R1 =
1, and R2 = 2; this leads to R3 = 0 [14]. Before we issue

the MAJ3 operation, we store fractional values to R1 and

R2 using various numbers of Frac. As this test relies on the

MAJ3 result, which requires three-row-activation, we can

only conduct the experiment on group B. Thus, for every chip

in group B, we scan every sub-array and record the result of

X1 and X2. Figure 7 presents the results: each bar represents

the proportion of columns that generate the corresponding

result of X1 and X2.

For Fig. 7a, we store all ones as the initial value in R1 and

R2 before we send any Frac operations. The configuration

without any Frac, our baseline, is equivalent to a normal

MAJ3 operation with operands in R1 and R2 being all ones.

The observed baseline result meets our expectation: both X1

and X2 are one. Similarly, for Fig. 7b, the initial value in R1

and R2 is zero, and the MAJ3 result without any Frac is all

zeros. However, as we issue Frac operations, the combination

of X1 = 1 and X2 = 0 begins to dominate and it becomes the

only result after two or more Frac operations are sent. This

is because Frac operations make R1 and R2 hold fractional

values and generate the different MAJ3 results of X1 and X2.

For Fig. 7c and Fig. 7d, we change the rows that hold

fractional values to R1 and R3, and store all ones and all zeros

to R2. The result pattern with one Frac is a little different

from the first two subplots, but the overall conclusion is

the same: it proves that fractional values can be stored in
almost every bit in the DRAM chip, and the initial value

stored in the row doesn’t affect the quality of the fractional

value after multiple Frac operations are executed.

We want to highlight that while Frac is based on
unspecified behaviour of DRAM chips, it does not mean
it is an unreliable operation. Our above evaluation showed

that Frac exhibited a stable, predictable, behaviour wherever

we were able to study it (DRAM group B). For the DRAM

groups that we were unable to thoroughly study Frac due

to their lack of capability to perform a three-row-activation,

we make the hypothesis that Frac has similar characteristics

and can work on all bits. Our evaluation of the use case of

Frac in Section VI-B2 provides supports for this hypothesis.

C. Evaluation of Half-m

Half-m, our second primitive, can store half values on

masked bits in a row. It utilizes charge sharing among four

simultaneously opened rows. If the initial values stored in

these four rows are two ones and two zeros, it will hold a

fractional value close to Vdd/2 after Half-m.

Similar to the evaluation method we used for Frac, we

conduct both a retention time test and a MAJ3 test on the

value generated from Half-m. We only evaluate the modules

in group B during this experiment due to the limited support

for the MAJ3 operation in groups C and D; However, groups

C and D are also capable of performing four-row-activation

and Half-m. For four-row-activation, we choose the rows 0,

1, 8, 9 in every sub-array and make R1 = 8,R2 = 1. After we

issue the command sequence in Half-m, R3 = 0 and R4 = 9

will also be activated. We store one to R1 and R3, and zero

to R2 and R4 as the initial value to generate a Half value

with Half-m in that column. In contrast, the initial value

of all ones/zeros in four rows would generate a result of

“weak” ones/zeros after Half-m, as we show in Figure 4.

After Half-m is performed, we plot the retention time PDF

with the same six ranges as in Figure 6, for both the Half

value and “weak” ones. Since the result of Half-m is stored

in row 0 and 1 already, we can store ones/zeros to row 2 to

perform the MAJ3 operation among the first three rows and

get results of X1 and X2 respectively. The retention time and

MAJ3 results are shown in Figure 8.

As a reference point, we also plot the retention time PDF

of the fractional values generated by five Frac operations

from the same row. Compared with that, the retention time

of Half values present a similar distribution. That proves a

fractional value close to Vdd/2 is indeed stored in some cells

after Half-m. However, the fractional value is not consistent

across the row. The MAJ3 result shows that only 16% of

bits can generate the distinguishable Half value, i.e. having

a MAJ3 result of X1 = 1 and X2 = 0. The “weak” ones and

zeros do have decent quality, as the retention time of “weak”

ones is same as normal ones, so does the MAJ3 result of

“weak” ones/zeros.

Although not applicable to all the columns, this result

is a proof-of-concept showing that Half-m can be used to

store three distinguishable states in cells from the same row.

Moreover, since it is built upon a four-row-activation, it has

the potential to be extended to DDR4 modules [23] as well.

VI. USE CASES

In this section, we describe use cases that utilize the

proposed operations: extending in-memory majority-of-three

891

Figure 8: Both the retention time profile and the MAJ3 results

for the “weak one”, “weak zero” (no retention time profile),

and Half value generated in Half-m.

operation to more modules and increasing the reliability of the

existing in-memory majority operation, generating Physical

Unclonable Function (PUF), and potentially expanding the

storage capabilities of DRAM modules. We also characterize

two applications in detail with real DRAM chips using the

platform described in Section IV-A.

A. Extending in-memory majority operation in more modules

1) Proposal of F-MAJ: As mentioned in Section II, in-

memory MAJ3 can be performed in off-the-shelf DRAM

modules. However, according to Gao et al. [14], only a

limited number of modules from SK Hynix are able to

perform MAJ3. While more modules1 are capable of opening

multiple rows at the same time, the resultant value does not

conform to the MAJ3 logic.

Our experiments revealed that on these special DRAM

groups the root cause of the failure is that the command

sequence that performs MAJ3 actually activates four rows

instead of three. Specifically, we performed a thorough ex-

ploration using the sequence ACTIVATE(R1)-PRECHARGE-

ACTIVATE(R2), with all possible combinations of row

addresses R1 and R2. We found that within these modules

(group C and D in Table I), only N rows can be opened

simultaneously, where N is a power of two; i.e. 2, 4, 8,

16, etc. Moreover, all combinations of R1 and R2 that can

open 2k rows have k bits in difference. However, not all

combinations of R1 and R2 that have k different bits can

open 2k rows. This result partially verifies the hypothetical

row decoder circuit that Olgun et al. [23] used to explain the

behavior of four-row-activation. As a detailed study of the

row decoder structure is beyond the scope of this paper, we

only want to briefly highlight that for some modules, both
DDR3 and DDR4, opening four rows is feasible, but not
three.

Having a method to concurrently open four rows in a

sub-array raises the question: what more can this enable? An

issue is that it is difficult to build logic that utilizes “majority-

of-four”. The challenge lies in defining the result when two

operands are zeros and two others are ones. In contrast,

charge sharing among three rows naturally generates the

MAJ3 result. Following, we explain how we successfully

1SK Hynix DDR3 SDRAM with part number HMT351S6CFR8C-H9
and HMT451S6AFR8A-PB, group C and D in Table I

construct a MAJ3 operation using the charge sharing
among four rows; a major contribution of this work.

The key to transform a four-row-activation into MAJ3 is

storing fractional values in one of the four operands. This is

because the row that holds fractional values, which is close

to Vdd/2, will have the least influence on the bit-line voltage

during the charge sharing, and thus the final result will

depend on the majority voltage among the other three rows.

We call this operation, that utilizes the Four-row-activation to

perform MAJ3, F-MAJ. The detailed procedure to perform

F-MAJ is as follows:

1) Choose four rows that can be opened at the same time

2) Store a fractional value into one row with one or multiple

Frac operations. An initialization to all zeros/ones before

Frac is preferred to make the fractional value more even

across the row

3) Store three operands of MAJ3 to the other three rows

4) Issue ACTIVATE(R1)-PRECHARGE-ACTIVATE(R2),

and the result of MAJ3 will be stored on all four rows

Compared to the original MAJ3 operation, the overhead

of F-MAJ is the cost of storing a fractional value in an entire

row. The initialization before Frac can be implemented with

a single row copy proposed in ComputeDARM [14]. The

subsequent Frac operation only consists of two memory

commands (7 memory cycles), which is more light-weight

than a row copy (18 memory cycles). Assuming the same

strategy as ComputeDRAM, which exclusively uses reserved

rows for computation, we need to copy the operands to

the reserved locations and copy the result back as well.

In that case, F-MAJ takes only 29% more memory cycles

than the original MAJ3. However, with F-MAJ, we are

capable of performing the majority-of-three operation and

support ComputeDRAM-style computation in more DRAM

modules, even DDR4 modules potentially [23], which cannot

open three rows at the same time, but can open four rows.

Moreover, we found that F-MAJ can even generate a more

stable result compared to the original MAJ3 operation.
2) Evaluation of F-MAJ: In this section, we evaluate

the coverage and stability of the F-MAJ operation which

leverages the four-row-activation to perform logical majority-

of-three. We use the word “coverage” when referring to how

many bits in a row and how many chips in a DRAM group

can perform F-MAJ, and the word “stability” when referring

to the successful rate at which operation is performed on the

same cell over multiple iterations.
Since F-MAJ requires storing a fractional value in one of

the four rows, there are multiple variables to experiment

with, such as the row to store the fractional value and

the voltage level of the fractional value. We first explore

the optimal configurations that generate the best coverage

of F-MAJ. In this test, we examine all DRAM chips

which are capable of performing four-row-activation. We

fix {R1,R2,R3,R4} to {1,2,0,3} for chips in group C and

D, and to {8,1,0,9} for chips in group B. Group B supports

892

(a) Group B (b) Group C (c) Group D

(d) Zoom in Group B

Figure 9: Coverage of the F-MAJ operation as a function of

the number of Frac operations under different configurations

for DRAM chips in groups B, C, and D; subfigures (a), (b),

and (c), respectively. Subfigure (d) presents a more detailed

version of the results for group B. The black dashed lines in

subfigures (a) and (d) are the baseline MAJ3 operation.

the ComputeDRAM operations, thus if we activate row

1 and 2, three rows 0, 1, and 2 will be opened. We use

the original MAJ3 operation built upon three-row-activation

among the first three rows as the baseline design in group

B to compare with. During this exploration, we vary the

row that stores the fractional value from R1 to R4, and the

voltage level of the “fractional value” all the way from 0

to Vdd . We can finely control the voltage level by adjusting

the number of Frac operations we issue and the initial value

in that critical row before we send Frac. All sub-arrays

in every chip in group B, C, and D are tested. To verify

the success of F-MAJ, we set the three operands six times

as {1,0,0},{0,1,0},{0,0,1},{0,1,1},{1,0,1},{1,1,0}. A

column is considered capable of performing F-MAJ only

when it generates the correct majority result for all six sets

of inputs.

Fig. 9 demonstrates the coverage of the F-MAJ operation

in these three DRAM groups. Each line represents the

percentage of bits that successfully performed F-MAJ when

we use a different number of Frac operations to generate the

fractional value. Different colors stand for using different

rows to store fractional values. We plot the average value

among the modules in that group and the shaded part indicates

the 95% confidence interval. From Fig. 9, we can draw several

conclusions:

(a) Group B (b) Group B (c) Group C

Figure 10: Subfigure (a) presents a detailed break down of

F-MAJ coverage with different input combinations on group

C. Green lines stand for input combinations with two ones

and one zero; blue lines for two zeros and one one; red line

shows the overall F-MAJ coverage. Focus on the condition

of using R1 to store fractional value with initial value of all

ones. Subfigures (b) and (c) present the CDF of the reliability

of F-MAJ operation across different modules in group B and

C. The black dashed line in subfigure (b) presents the CDF

for the MAJ3 baseline.

F-MAJ can be performed on all DRAM chips that are
capable of opening four rows. A non-zero result for all the

chips proves this point.

Different groups favor different configurations. For

example, having a fractional value larger than Vdd/2 (meaning

the initial value is all ones) in R1 generates the best result

for group C, while a fractional value smaller than Vdd/2 in

R4 is the favorite configuration for group D. Because of the

“black box” nature of DRAM circuits, it is challenging for

us to surmise the real cause behind the phenomenon. Going

forward, we use the experimental results for choosing the

best configuration for each group.

F-MAJ improves the coverage of the original MAJ3
operation. The best configuration of group B is storing

a fractional value with two Frac operations starting with

all ones in R2, which has a 99.8% coverage of F-MAJ

operation, while the original MAJ3 works on 98.0% of

columns. This is because the original MAJ3 does not open

the three rows at the exact same time, and they are not

perfectly symmetric. Among the three opened rows, there is

always a “primary” row which has more influence on the

bit-line voltage compared with the other two. Thus, it has a

larger error rate when the majority result is the opposite of

the initial value of that primary row. However, for F-MAJ,

we can put the fractional value in this primary row and

adjust the voltage level of the fractional value. The insight

is that F-MAJ provides a chance for us to enhance the
symmetry among the operands, therefore providing a
wider coverage on the DRAM chip.

To study how the number of Frac operations influences the

coverage of F-MAJ in detail, we focus on one configuration

and examine each individual input combination. Using group

C with fractional values in R1 and an initial value of all

893

ones as an example, we show the result in Figure 10a.

Green lines represent the input combinations that generate a

majority result of one, while blue lines represent the input

combinations that generate a result of zero. The red line

represents the combined F-MAJ success ratio, which is

essentially the top line in Figure 9b. Without Frac, all ones

are stored in R1, thus more charge will be injected to the

bit-line from R1, and it is more likely to generate a result

of one. We can verify this by the fact that the green lines

in Figure 10a reach 100% without Frac, but the blue lines

are pretty low under the same condition. As we issue more

Frac operations, the voltage level in R1 is reduced, and the

majority result is more likely to be zero than one, which is

confirmed by the fact that the blue lines are rising and green

ones are declining. This is additional evidence showing the

relationship between Frac and the voltage level in the cell.

At last, we test the stability of F-MAJ among group B

and C. For each module, we randomly selected 500 different

sub-arrays across all the banks, and perform F-MAJ 10000

times at each sub-array with random inputs. Within the sub-

array, we use the same rows mentioned before and apply

the best configuration that we found in the last experiment.

The stability for a bit-line is the percent representing how

many times it generated the correct majority result out of

10000 trials. The cumulative distributive function is plotted

in Fig. 10c and Fig. 10b. Each line stands for a module in

that DRAM group. Across the modules in group C, 33.0%

to 85.2% of the columns can always generate the correct

result. As for the modules in group B, at least 95.4% of the

columns can reliably perform F-MAJ, beating the original

MAJ3 operation which uses three-row-activation. The average

error rate of in-memory majority thus can be reduced from

9.1% to 2.2%.

We conclude that F-MAJ not only expands in-memory

majority operations to more modules – including potentially

DDR4 modules, but also provides a better stability compared

to the existing MAJ3 operation.

B. Physical Unclonable Function (PUF)

1) Proposal of Frac-based PUF: A Physical Unclonable

Function (PUF) [27] is an intrinsic function attached to a

physical object, which can be used for device authentication

[28], [29], [30]. It takes a “challenge” as the input, and gives

out a “response” based on the unique physical characteristics

of the device. The uniqueness usually comes from manu-

facturing variations in its physical micro-structure, thus it is

unpredictable and almost impossible to duplicate. An ideal

PUF consistently generates the same response to the same

challenge on the same device, while the responses to the

same challenge generated by difference devices are distinct

and random. This feature makes PUF a perfect candidate

for generating fingerprints or signatures of digital devices.

In addition, PUFs can be utilized to generate cryptographic

keys [31], [32], and hardware obfuscation [33].

Due to the prevalence of DRAM memory across modern

digital systems, a DRAM-based PUF is an attractive option.

Moreover, the large address space in DRAMs naturally

provides plenty of challenge-response pairs. Specifically, the

address and size can be construed as the challenge, and the

data read out will be the response. Previous DRAM-based

PUFs have tried to leverage the variations in DRAM start-up

values [34], DRAM cell retention failures [35], [36], [37],

[38], and read-out data with reduced write duty-cycle [39] or

other timing parameters like tRCD [38] and tRP [40]. However,

past DRAM-based PUFs have several drawbacks such as

long evaluation time, sensitivity to environmental changes

(temperature or supply voltage), and requirement for a filter

or error correction.

CODIC-based PUF [41] solved these issues using a

modified DRAM substrate. Orosa et al. [41] proposed

modifying control circuits inside the DRAM array to provide

a new CODIC-sig command, which could drive the cell to

Vdd/2. A subsequent read would enable the sense amplifier

and thus “amplify” the cell voltage to either Vdd or 0,

dependent on manufacturing variations. The read out data

are both random and unique; thus they can be used as a

PUF response. In addition, whether Vdd/2 is regarded as

a zero or one is determined by the sense amplifier circuit,

which is essentially a comparator. Thus, it is independent

from the temperature and supply voltage. However, all of

these benefits require hardware modifications to the existing

DRAM circuits, which raises two hindrances to the realization

of the technique with commercial DRAMs. First, DRAM

manufacturers are reluctant to modify their designs due

to the competitive and low-margin nature of the DRAM

industry. Second, the introduction of a DRAM command

requires modifications to the JEDEC specification. The

CODIC authors did mention an alternative approach that

works with off-the-shelf DRAMs. Specifically, they disabled

DRAM refresh and waited for 48 hours to let the DRAM cell

voltage leak towards Vdd/2 to emulate the effect of CODIC-

sig. While this is an alternative that works with commercial

DRAMs, it is too time-consuming to be considered for

practical use.

With FracDRAM, we can use multiple Frac operations to

achieve an effect similar to the CODIC-sig command, as the

more Frac operations issued, the closer the cell voltage is

to Vdd/2. According to our experiment results across nine

memory groups from four major DRAM vendors, ten Frac
operations are enough to generate a voltage close to Vdd/2

for PUF. A Frac-based PUF maintains all the merits of a

CODIC-based PUF and can be implemented in off-the-shelf

DRAMs without any hardware modification.

2) Evaluation of Frac-based PUF: In this section, we

want to demonstrate that the proposed Frac-based PUF can

generate a unique and reliable response to a challenge with

real DRAM modules. We take the normalized Hamming
Distance, which is commonly used in PUF research [31],

894

Figure 11: The distribution of Intra-HD and Inter-HD in

group A to I, as well as cross-group. The number under

group ID is the average Hamming Weight of the responses

in that group.

[34], [39], [40], [42], [43], [44], [45], [46], [47], [48], [49], as

the metric to represent the difference between two responses.

Specifically, that is the number of different bits in two

responses divided by the total number of bits.

We use the notation of Intra-HD to indicate the Hamming
Distance between two responses from the same DRAM

module to the same challenge. Ideally, Intra-HD should

be zero, meaning the PUF can reliably produce the same

signature for the device. The notation of Inter-HD represents

the Hamming Distance between two responses to the same

challenge from different modules. Ideally, Inter-HD should

be around 0.5 which is the distance between two independent

random strings, meaning the PUF can produce unique

responses.

In Frac-based PUF, the address and the size of the memory

segment is used as a challenge, and the read out data from

that segment is the response. We fixed the memory segment

length to 8KB, which can fit in a single DRAM row. To get

a challenge-response pair, we first choose an address (bank

and row), and store all ones to that row as the initial value.

Next we issue ten Frac operations to the target row to make

the voltage close to Vdd/2. Finally, we read the entire row

out. We tested at least two modules from each DRAM group,

and all the groups capable of performing Frac are covered.

For each module we collected 120 challenge-response pairs,

and we send the same set of challenges to all the modules.

The distribution of Intra-HD and Inter-HD is shown in

Figure 11. First, we found all the Intra-HDs exhibit an

excellent property: they have a very narrow distribution and

only concentrate around zero. The maximum Intra-HD ever

seen is 0.051 from group G. Second, the Inter-HDs exhibit

different patterns across different groups. For some groups

like A, B, and E, the Inter-HD is clustered around 0.3 or 0.4,

which shows some extent of similarity between the responses

from different modules in the same group. The real cause

of that is the responses from these groups have a Hamming

Figure 12: The distribution of Intra-HD and Inter-HD between

responses with (a) different DRAM supply voltages and (b)

different temperatures. The maximum intra-HD and minimum

inter-HD are marked by the vertical dotted lines.

Weight (i.e. the portion of the bits that hold one) away from

0.5. For example, in group A, only 21% of bits are one,

which means most of the bits are zero, and that reduces the

Inter-HD. Hamming Weight basically tells how many sense

amplifiers regard Vdd/2 as one, which depends on the detailed

circuit implementation of the bit-line and sense amplifier.

Thus different DRAM groups produce different Hamming
Weight. Although the randomness of the response is harmed,

the uniqueness is still guaranteed: the minimum Inter-HD is

0.27, which is still way larger than the maximum Intra-HD.

Notice that the Hamming Weight result is not aligned with the

result in Figure 6. That’s because we use different randomly

selected rows in both tests.

Ten days from when we collected the first set of data, we

generated the second set of responses to the same challenges

again, but with a DRAM supply voltage of 1.4V (nominal

supply voltage is 1.5V). We plot the Intra-HD and Inter-HD

across these two data set in Figure 12(a). For the Inter-HD, we

consider both within the same and between different DRAM

groups. The highest Intra-HD is 0.07 and the lowest Inter-HD

is 0.30. After an additional 3 months, we collected the third

set of responses under different temperatures, and plot the

intra-HD and inter-HD between those and the first data set

collected three months ago under room temperature(20°C)

in Figure 12(b). Although the average intra-HD increases as

the temperature goes up, it does not change much, and most

importantly, the maximum intra-HD remains far away from

the minimum inter-HD. These results show that Frac-based

PUF is robust againt environmental changes.

Other than the reliability and uniqueness, we also examined

the randomness of the generated response with the random

number test suite from NIST [50]. There are in total 15

different tests in the suite that check multiple characteristics

including frequency, longest run, estimated entropy, template

matching, etc. Because the raw response from the PUF is bi-

ased (the Hamming Weight is not 0.5), we use a modified Von

Neumann randomness extractor to whitening the responses

first and guarantee that the stream is balanced [41], [51].

Then, we concatenate the responses from different addresses

895

together. We use one million bits per module and feed that

into the test suite. All 15 tests passed, which verifies the

randomness of Frac-based PUF.

The total evaluation time for the Frac-based PUF will

be: a preparation of 88 memory cycles (an initialization of

all ones followed by 10 Frac operations) in addition to the

readout time of the 8KB segment. In total, the evaluation

time would be 1.5us (assuming a 2.5ns memory cycle), with

the major time cost being the reading process. The evaluation

time can be further reduced to 0.7us if an optimized memory

controller is used so that the PUF response is read out at

full speed.

C. Others

In addition to the cases we described above, the availability

of a fractional value in DRAM can be utilized in other ways.

A possible use is to expand the storage capability of

DRAM modules. Using the Half-m operation, we can store

fractional value, one, or zero in arbitrary DRAM columns,

which enables the cell to store three different states. Therefore,

each cell represents a ternary bit. The overhead is that with

Half-m, we need to write normal binary bits in four rows and

issue a four-row-activation to generate one row of ternary bits.

In addition, based on our evaluation the reading mechanism

is not mature yet, since the way we have proposed to read

out the fractional value requires four copies of the data (the

MAJ3 method mentioned in Section IV-B), and the fractional

value is destroyed after readout. We leave the readout and

data recovery issue to future work; a possible solution would

be a different sense amplifier design. Previous work [52] has

proposed multi-level DRAM cells with “quantum dot gate”

transistor. But only the layout of the multi-level DRAM cell

is provided, and that’s not fabricated yet.

Another use for fractional values is to assist the charac-

terization of DRAM retention time. For example, focusing

on a single cell, we can store different levels of fractional

value and measure the retention time of each, thereby roughly

tracing the voltage change during leakage. Different voltage

levels can be generated in multiple ways: using a different

number of Frac operations, changing the initial value in

Half-m, and interrupting multiple-row-activation similar to

Half-m.

Finally, it can be used in reverse-engineering DRAM

designs and parameters, such as the sense amplifier threshold.

VII. RELATED WORK

To the best of our knowledge, this is the first work that

demonstrates fractional values being stored in off-the-shelf

DRAMs. In this section, we present related work and identify

its similarities and difference from FracDRAM.

Near-memory [1], [2], [3], in-memory [4], [5], [6], [7], [8],

and with-memory-computing [9], [10], [11], [12] techniques

are experiencing a “Renaissance” due to their potential to

reduce the energy consumption from data transfer between

storage and processing units. FracDRAM expands this area

by identifying two novel techniques for storing fractional

values in unmodified DRAM modules and evaluating two

use cases for the new operations.

One of the key concepts in FracDRAM is the violation of

timing specifications, which has been employed in previous

works. The authors of [15], [16], [17], [53], [54] proposed

pushing the limits of excessive process-margin in DRAM to

enhance it’s performance.

Moving a step further, recent work presented techniques

that advance the concept of reducing the timing of DRAM

commands outside of specification values. Specifically, tim-

ing is violated in such a way that new functionality is

implemented by pushing the DRAM to undefined states.

ComputeDRAM [14] was the first work that identified

specially timed DRAM command sequencies that can perform

with-memory computation in unmodified DRAM. Compute-

DRAM utilized reduced tRAS and tRP to open three rows

at the same time, and perform majority operation with the

charge sharing among three rows. ComputeDRAM found that

different number of rows can be opened with the proposed

command sequence, however, only three-row-activation is

leveraged to build majority operation on the only DRAM

configuration that support it. FracDRAM expands the ideas

of ComputeDRAM to enable fractional DRAM storage. The

new capabilities extend ComputeDRAM-style, in-memory,

majority operation to a larger set of DRAM module. We show

how fractional DRAM storage can enhance the reliability of

existing ComputeDRAM-style majority operation, reducing

the error rate from 9.1% to 2.2%.

Operating outside of timing specifications means that

correctness of reads and writes is not guaranteed. Previ-

ous works [38], [39], [40] leveraged the randomness and

uniqueness of the erroneous readout data to build DRAM-

based Physical Uncloneable Function (PUF). Orosa et al. [41]

compared past DRAM-based PUFs and proved that CODIC-

based PUF provides the state-of-the-art throughput and is

more robust to environmental changes. Our proposed Frac-

based PUF maintains all the merits of a CODIC-based PUF

and is implementable with unmodified DRAM.

Kim et al. [55] proposed reducing the row activation

latency to generate random numbers with high throughput

and low latency. QUACTRNG [23] leveraged the command

sequence in ComputeDRAM to open four rows simultane-

ously and explored different combinations of initial values in

these four rows to generate random numbers using the charge

sharing among them. Although we did not evaluate DDR4

modules due to the limitation of our experiment platform,

the result of QUACTRNG proves four-row-activation can

be performed in off-the-shelf DDR4 chips, which shows the

potential of supporting F-MAJ and Half-m in DDR4 DRAMs.

Previous works [15], [16], [17], [18] have shown that

voltage levels other than Vdd and 0 can be stored in DRAM

cells. However, the concept of a “fractional value”, which

896

is a new logical state, is first introduced in FracDRAM. For

example, past work regards a 0.8Vdd voltage as a “weak”

logical one, rather than a separate state of fractional value. In

addition, the goal for which such voltage level was generated

is different as well. Previous works aimed at reducing the

DRAM access latency, whereas FracDRAM explicitly aims

to generate a new logical state.

Finally, previous work has suggested modifications in

hardware or operational values to store Vdd/2 in DRAM cells.

DTRNG [56] proposed to use a lower supply voltage on word-

line to store Vdd/2 in DRAM cell and issue a subsequent read

to generate random numbers. CODIC [41] proposed exposing

detailed DRAM control signals to users. One of the new

operations they suggested is to set the cell voltage to Vdd/2,

based on which they built a CODIC-based PUF. The rationale

of the Frac-based PUF is also generating Vdd/2 in DRAM

cells. However, their methodology of generating Vdd/2 is

different from FracDRAM. Both of previous works are only

verified in simulation, and can not work on unmodified

DRAMs.

VIII. CONCLUSIONS

We have proposed and evaluated two novel primitive

operations that store fractional values to the entire DRAM

row, or to masked bits in a row. With these operations, we

demonstrate for the first time the storing and destructive

readout of fractional values in off-the-shelf, unmodified,

DRAM chips. We show that with fractional value storage, in-

memory majority operations can be expanded to more DRAM

modules, and the error rate of the existing in-memory majority

operations can be reduced from 9.1% to 2.2%. Furthermore,

we presented a PUF based on fractional value storage, which

has state-of-the-art throughput and can be implemented in

commercial DRAM.

ACKNOWLEDGMENTS

This material is based on research sponsored by the Air

Force Research Laboratory (AFRL) and the Defense Ad-

vanced Research Projects Agency (DARPA) under agreement

No. FA8650-18-2-7862. The U.S. Government is autho-

rized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of

the authors and should not be interpreted as necessarily

representing the official policies or endorsements, either

expressed or implied, of the Air Force Research Laboratory

(AFRL), the Defense Advanced Research Projects Agency

(DARPA), or the U.S. Government.

REFERENCES

[1] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: a programmable digital neuromorphic
architecture with high-density 3d memory,” in Computer Ar-
chitecture (ISCA), 2016 ACM/IEEE 43rd Annual International
Symposium on. IEEE, 2016, pp. 380–392.

[2] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled
instructions: a low-overhead, locality-aware processing-in-
memory architecture,” in Computer Architecture (ISCA), 2015
ACM/IEEE 42nd Annual International Symposium on. IEEE,
2015, pp. 336–348.

[3] A. Gutierrez, M. Cieslak, B. Giridhar, R. G. Dreslinski,
L. Ceze, and T. Mudge, “Integrated 3d-stacked server designs
for increasing physical density of key-value stores,” in ACM
SIGPLAN Notices, vol. 49, no. 4. ACM, 2014, pp. 485–498.

[4] P. M. Kogge, “Execube - a new architecture for scaleable mpps,”
in 1994 International Conference on Parallel Processing Vol.
1, vol. 1, Aug 1994, pp. 77–84.

[5] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent
ram,” IEEE Micro, vol. 17, no. 2, pp. 34–44, March 1997.

[6] H. S. Stone, “A logic-in-memory computer,” IEEE Transac-
tions on Computers, vol. C-19, no. 1, pp. 73–78, Jan 1970.

[7] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “AC-
DIMM: associative computing with STT-MRAM,” SIGARCH
Comput. Archit. News, vol. 41, no. 3, pp. 189–200, Jun. 2013.

[8] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: a
processing-in-memory architecture for bulk bitwise operations
in emerging non-volatile memories,” in Proceedings of the
53rd Annual Design Automation Conference. ACM, 2016, p.
173.

[9] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“DRISA: A DRAM-based reconfigurable in-situ accelerator,”
in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2017, pp. 288–301.

[10] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM:
enabling in-memory boolean computations in CMOS static
random access memories,” IEEE Transactions on Circuits and
Systems I: Regular Papers, no. 99, pp. 1–14, 2018.

[11] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy,
D. Blaauw, and R. Das, “Compute caches,” in High Per-
formance Computer Architecture (HPCA), 2017 IEEE Inter-
national Symposium on. IEEE, 2017, pp. 481–492.

[12] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand,
J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C.
Mowry, “Ambit: in-memory accelerator for bulk bitwise
operations using commodity dram technology,” in Proceedings
of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017, pp. 273–287.

[13] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun,
G. Pekhimenko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A.
Kozuch, and T. C. Mowry, “Rowclone: fast and energy-
efficient in-dram bulk data copy and initialization,” in 2013
46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), Dec 2013, pp. 185–197.

[14] F. Gao, G. Tziantzioulis, and D. Wentzlaff, “Computedram: In-
memory compute using off-the-shelf drams,” in Proceedings
of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 100–113.
[Online]. Available: https://doi.org/10.1145/3352460.3358260

897

[15] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri,
K. Chang, and O. Mutlu, “Adaptive-latency dram: Optimizing
dram timing for the common-case,” in 2015 IEEE 21st
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2015, pp. 489–501.

[16] H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri,
D. Lee, O. Ergin, and O. Mutlu, “Chargecache: Reducing
dram latency by exploiting row access locality,” in 2016 IEEE
International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2016, pp. 581–593.

[17] Y. Wang, A. Tavakkol, L. Orosa, S. Ghose, N. M. Ghiasi,
M. Patel, J. S. Kim, H. Hassan, M. Sadrosadati, and O. Mutlu,
“Reducing dram latency via charge-level-aware look-ahead par-
tial restoration,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2018, pp.
298–311.

[18] X. Zhang, Y. Zhang, B. R. Childers, and J. Yang, “Restore
truncation for performance improvement in future dram
systems,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2016,
pp. 543–554.

[19] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM,
disk. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2007.

[20] B. Keeth, R. J. Baker, B. Johnson, and F. Lin, DRAM Circuit
Design: Fundamental and High-Speed Topics, 2007.

[21] JEDEC, “Standard no 79-3f,” DDR3 SDRAM Specification,
2012.

[22] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An
experimental study of data retention behavior in modern dram
devices: Implications for retention time profiling mechanisms,”
ACM SIGARCH Computer Architecture News, vol. 41, no. 3,
pp. 60–71, 2013.

[23] A. Olgun, M. Patel, A. G. Yağlıkçı, H. Luo, J. S. Kim,
F. N. Bostancı, N. Vijaykumar, O. Ergin, and O. Mutlu,
“Quac-trng: High-throughput true random number generation
using quadruple row activation in commodity dram chips,”
in 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). Los Alamitos, CA,
USA: IEEE Computer Society, jun 2021, pp. 944–957.
[Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ISCA52012.2021.00078

[24] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang,
G. Pekhimenko, D. Lee, O. Ergin, and O. Mutlu, “Softmc: A
flexible and practical open-source infrastructure for enabling
experimental dram studies,” in 2017 IEEE International
Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2017, pp. 241–252.

[25] D. S. Yaney, C.-Y. Lu, R. A. Kohler, M. J. Kelly, and J. T.
Nelson, “A meta-stable leakage phenomenon in dram charge
storage-variable hold time,” in 1987 International Electron
Devices Meeting. IEEE, 1987, pp. 336–339.

[26] M. K. Qureshi, D.-H. Kim, S. Khan, P. J. Nair, and O. Mutlu,
“Avatar: A variable-retention-time (vrt) aware refresh for
dram systems,” in 2015 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. IEEE,
2015, pp. 427–437.

[27] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon
physical random functions,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security, 2002,
pp. 148–160.

[28] W. Che, F. Saqib, and J. Plusquellic, “Puf-based authentication,”
in 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2015, pp. 337–344.

[29] M. Majzoobi, M. Rostami, F. Koushanfar, D. S. Wallach, and
S. Devadas, “Slender puf protocol: A lightweight, robust, and
secure authentication by substring matching,” in 2012 IEEE
Symposium on Security and Privacy Workshops. IEEE, 2012,
pp. 33–44.

[30] M. Rostami, M. Majzoobi, F. Koushanfar, D. S. Wallach,
and S. Devadas, “Robust and reverse-engineering resilient
puf authentication and key-exchange by substring matching,”
IEEE Transactions on Emerging Topics in Computing, vol. 2,
no. 1, pp. 37–49, 2014.

[31] R. Maes, A. Van Herrewege, and I. Verbauwhede, “Pufky:
A fully functional puf-based cryptographic key generator,”
in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2012, pp. 302–319.

[32] Z. Paral and S. Devadas, “Reliable and efficient puf-based key
generation using pattern matching,” in 2011 IEEE international
symposium on hardware-oriented security and trust. IEEE,
2011, pp. 128–133.

[33] J. B. Wendt and M. Potkonjak, “Hardware obfuscation using
puf-based logic,” in 2014 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2014, pp. 270–
271.

[34] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “Dram-
based intrinsic physically unclonable functions for system-level
security and authentication,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 25, no. 3, pp. 1085–
1097, 2016.

[35] C. Keller, F. Gürkaynak, H. Kaeslin, and N. Felber, “Dynamic
memory-based physically unclonable function for the gen-
eration of unique identifiers and true random numbers,” in
2014 IEEE international symposium on circuits and systems
(ISCAS). IEEE, 2014, pp. 2740–2743.

[36] S. Sutar, A. Raha, D. Kulkarni, R. Shorey, J. Tew, and
V. Raghunathan, “D-puf: An intrinsically reconfigurable dram
puf for device authentication and random number generation,”
ACM Transactions on Embedded Computing Systems (TECS),
vol. 17, no. 1, pp. 1–31, 2017.

[37] W. Xiong, A. Schaller, N. A. Anagnostopoulos, M. U. Saleem,
S. Gabmeyer, S. Katzenbeisser, and J. Szefer, “Run-time
accessible dram pufs in commodity devices,” in International
Conference on Cryptographic Hardware and Embedded Sys-
tems. Springer, 2016, pp. 432–453.

898

[38] J. S. Kim, M. Patel, H. Hassan, and O. Mutlu, “The dram
latency puf: Quickly evaluating physical unclonable functions
by exploiting the latency-reliability tradeoff in modern com-
modity dram devices,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE,
2018, pp. 194–207.

[39] M. S. Hashemian, B. Singh, F. Wolff, D. Weyer, S. Clay,
and C. Papachristou, “A robust authentication methodology
using physically unclonable functions in dram arrays,” in 2015
Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2015, pp. 647–652.

[40] B. B. Talukder, B. Ray, D. Forte, and M. T. Rahman, “Prelatpuf:
Exploiting dram latency variations for generating robust device
signatures,” IEEE Access, vol. 7, pp. 81 106–81 120, 2019.

[41] L. Orosa, Y. Wang, M. Sadrosadati, J. S. Kim, M. Patel,
I. Puddu, H. Luo, K. Razavi, J. Gómez-Luna, H. Hassan,
N. Mansouri-Ghiasi, S. Ghose, and O. Mutlu, “Codic: A low-
cost substrate for enabling custom in-dram functionalities and
optimizations,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 484–
497.

[42] S. S. Kumar, J. Guajardo, R. Maes, G.-J. Schrijen, and P. Tuyls,
“The butterfly puf protecting ip on every fpga,” in 2008 IEEE
International Workshop on Hardware-Oriented Security and
Trust. IEEE, 2008, pp. 67–70.

[43] S. Sutar, A. Raha, and V. Raghunathan, “D-puf: An intrin-
sically reconfigurable dram puf for device authentication in
embedded systems,” in 2016 International Conference on
Compliers, Architectures, and Sythesis of Embedded Systems
(CASES). IEEE, 2016, pp. 1–10.

[44] I. Kumari, M.-K. Oh, Y. Kang, and D. Choi, “Rapid run-time
dram puf based on bit-flip position for secure iot devices,” in
2018 IEEE SENSORS. IEEE, 2018, pp. 1–4.

[45] Q. Tang, C. Zhou, W. Choi, G. Kang, J. Park, K. K. Parhi,
and C. H. Kim, “A dram based physical unclonable function
capable of generating¿ 10 32 challenge response pairs per
1kbit array for secure chip authentication,” in 2017 IEEE
Custom Integrated Circuits Conference (CICC). IEEE, 2017,
pp. 1–4.

[46] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy,
“Investigation of dram pufs reliability under device accelerated

[49] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, and V. Khan-
delwal, “Design and implementation of puf-based” unclonable”
rfid ics for anti-counterfeiting and security applications,” in
2008 IEEE international conference on RFID. IEEE, 2008,
pp. 58–64.

aging effects,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). IEEE, 2017, pp. 1–4.

[47] W. Liu, Z. Zhang, M. Li, and Z. Liu, “A trustworthy key
generation prototype based on ddr3 puf for wireless sensor
networks,” Sensors, vol. 14, no. 7, pp. 11 542–11 556, 2014.

[48] A. Maiti, J. Casarona, L. McHale, and P. Schaumont, “A large
scale characterization of ro-puf,” in 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST).
IEEE, 2010, pp. 94–99.

[50] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A
statistical test suite for random and pseudorandom number
generators for cryptographic applications,” Booz-allen and
hamilton inc mclean va, Tech. Rep., 2001.

[51] R. Shaltiel, “An introduction to randomness extractors,” in
International colloquium on automata, languages, and pro-
gramming. Springer, 2011, pp. 21–41.

[52] S. Karmakar, “Design of multi-state dram using quantum dot
gate non-volatile memory (qdnvm),” Silicon, vol. 11, no. 2,
pp. 869–877, 2019.

[53] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam,
B. Akesson, N. Wehn, and K. Goossens, “Exploiting
expendable process-margins in drams for run-time performance
optimization,” in Proceedings of the Conference on Design,
Automation & Test in Europe, ser. DATE ’14. European
Design and Automation Association, 2014, pp. 173:1–173:6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2616606.
2616820

[54] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh,
D. Lee, T. Li, G. Pekhimenko, S. Khan, and O. Mutlu, “Under-
standing latency variation in modern dram chips: Experimental
characterization, analysis, and optimization,” in Proceedings
of the 2016 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Science, 2016, pp.
323–336.

[55] J. S. Kim, M. Patel, H. Hassan, L. Orosa, and O. Mutlu,
“D-range: Using commodity dram devices to generate true
random numbers with low latency and high throughput,” in
2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2019, pp. 582–595.

[56] K. Humood, B. Mohammad, and H. Abunahla, “Dtrng: Low
cost and robust true random number generator using dram
weak write scheme,” in 2021 IEEE International Symposium
on Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

899

