
CASH: Supporting IaaS Customers with a Sub-core Configurable Architecture

Yanqi Zhou
Electrical Engineering Department

Princeton University
Princeton, USA

yanqiz@princeton.edu

Henry Hoffmann
Computer Science Department

University of Chicago
Chicago, USA

hankhoffmann@cs.uchicago.edu

David Wentzlaff
Electrical Engineering Department

Princeton University
Princeton, USA

wentzlaf@princeton.edu

Abstract—Infrastructure as a Service (IaaS) Clouds have
grown increasingly important. Recent architecture designs
support IaaS providers through fine-grain configurability, al-
lowing providers to orchestrate low-level resource usage. Little
work, however, has been devoted to supporting IaaS customers
who must determine how to use such fine-grain configurable
resources to meet quality-of-service (QoS) requirements while
minimizing cost. This is a difficult problem because the
multiplicity of configurations creates a non-convex optimization
space. In addition, this optimization space may change as
customer applications enter and exit distinct processing phases.
In this paper, we overcome these issues by proposing CASH:
a fine-grain configurable architecture co-designed with a cost-
optimizing runtime system. The hardware architecture enables
configurability at the granularity of individual ALUs and L2
cache banks and provides unique interfaces to support low-
overhead, dynamic configuration and monitoring. The runtime
uses a combination of control theory and machine learning
to configure the architecture such that QoS requirements are
met and cost is minimized. Our results demonstrate that
the combination of fine-grain configurability and non-convex
optimization provides tremendous cost savings (70% savings)
compared to coarse-grain heterogeneity and heuristic optimiza-
tion. In addition, the system is able to customize configurations
to particular applications, respond to application phases, and
provide near optimal cost for QoS targets.

I. INTRODUCTION

Currently, cloud customers have little to no control. CASH
gives these customers control with a combination of a
configurable architecture – which can be reconfigured on an
extremely fine timescale – and an optimizing runtime system
– which can meet quality-of-service (QoS) guarantees while
minimizing cost. Such configurability, in combination with
automated runtime management, gives customers fine-grain
control. We believe that deployment of such a system
would then also benefit cloud providers by attracting more
customers.

The move to IaaS systems has spawned new architectures
optimized for the data center and the Cloud. Microservers [4,
37, 59], data center optimized accelerators [19, 31, 43], and
fine-grain reconfigurable processors [64] are all examples.

Highly configurable processors have unique benefits for
the IaaS Cloud as resources can be moved between cus-
tomers. For instance, configurable cache hierarchies [20, 23,

28, 44, 52] and configurable pipeline architectures (modifi-
able issue width, instruction window size, number of phys-
ical registers, etc.) [15, 41, 57, 64] allow fine grain control
over resource scheduling. As fine-grain configurability is
adopted in data centers, IaaS customers are left with the
challenge of configuring and purchasing fine-grain resources
to meet their QoS needs while minimizing their cost.

A. Challenges

On the one hand, fine-grain configurability has the po-
tential to reduce costs by tailoring resource usage to the
customers’ demands. One the other hand, it greatly in-
creases complexity, which could alienate customers. Indeed,
finding the optimal configuration for an application and
customer’s needs is often a combinatorial optimization prob-
lem. Furthermore, as configurability becomes increasingly
fine-grained, the optimization space becomes non-convex,
further increasing the difficulty of optimization. To realize
the potential of fine-grain configuration in IaaS, we must
find simple interfaces that hide users from the complexity
of fine-grain configuration while ensuring that configuration
is guided to meet their needs.

B. The CASH Architecture and Runtime

This paper addresses the above challenges with CASH:
Cost-aware Adaptive Software and Hardware. CASH co-
designs both a hardware architecture and a runtime man-
agement system to provide QoS guarantees while mini-
mizing cost in support of IaaS customers. CASH allows
customers to express their performance needs through a
simple interface. The CASH runtime then configures the
CASH architecture to meet those goals with minimal cost.

The CASH architecture consists of a homogeneous fab-
ric of ALUs, FPUs, fetch units, and caches which can
be dynamically composed to create cores optimized for a
particular application. In an IaaS setting, this configurabil-
ity enables the runtime to match the in-core resources to
user performance goals, providing many of the benefits of
heterogeneous multicores while maintaining a homogeneous
fabric. The CASH architecture is inspired by the Sharing
Architecture [64], but improves on it with fast reconfigu-
ration, a well defined software-hardware interface which is

needed for the CASH runtime, and the use of an on-chip
network to monitor remote cores’ performance. Monitoring
a remote core’s performance is critical for the CASH runtime
to be able to assess the effectiveness of its control, but is
challenging as the CASH architecture does not contain fixed
cores.

The CASH runtime overcomes the software challenges
listed above. It uses a combination of control theory and
reinforcement learning to provide QoS guarantees while
adapting to application phases and non-convex optimization
spaces. The control system ensures QoS guarantees are met
while reinforcement learning adapts control to application
phases and prevents the system from getting trapped in local
optima.

C. Summary of Results

We evaluate CASH using a cycle-accurate simulator and
13 applications including the apache webserver, a mail
server, and the x264 video encoder. For each application,
we set QoS goals and use CASH to meet those goals while
minimizing cost. Our results demonstrate the following:
• Fine-grain configurability enables tremendous potential

cost savings, but that savings must be achieved by
navigating non-convex optimization spaces that vary
with application phase (Sec. II).

• The architecture and runtime support fast reconfigura-
tion with low overhead (Sec. VI-A).

• The CASH runtime produces near-optimal results with
rare QoS violations. In contrast, convex optimization
techniques result in more QoS violations and increased
cost (Sec. VI-C).

• CASH quickly adapts to application phases to minimize
cost (Sec. VI-D).

• CASH produces over 3× cost savings compared to
coarse-grain heterogeneous architectures (Sec. VI-E).

D. Contributions

In summary, this paper makes the following contributions:
• It extends previous configurable core architectures

to provide rapid, low-overhead reconfigurability (Sec.
III-B).

• It develops a novel hardware-software interface for
monitoring a sub-core configurable architecture (Sec.
III-B2).

• It demonstrates the difficulty of managing the non-
convex optimization spaces that arise with fine-grain
configurable architectures (see Sec. II).

• It describes how to provide guarantees while overcom-
ing the difficulties of non-convex optimization through
a combination of control theory and machine learning
(see Sec. IV).

• It demonstrates the CASH approach through simulation
showing that the combination of fine-grain configura-
bility and adaptive management provides near optimal

cost for just a small number of QoS violations (see
Sec. VI).

While other architectures have employed fine-grain
configurability to support IaaS providers, we believe this
is the first approach designed to support IaaS customers
through its combination of cost-optimizing architecture
and runtime.

II. MOTIVATIONAL EXAMPLE

There is ample evidence in the literature that fine-grain
configurable architectures have the potential to produce
greater energy efficiency and cost savings than static ar-
chitectures or even coarse-grain configurable architectures
[41, 57, 64]. The one drawback of these approaches is that
fine-grain configurability creates complicated, non-convex
optimization spaces characterized by the presence of local
extrema that can vary as the application moves from phase
to phase.

This section motivates the need to co-design both re-
configurable architecture and runtime management system.
We first demonstrate the complexity of fine-grain resource
management and then show its potential benefits for IaaS
customers.

A. Allocating Resources within the CASH Architecture

We demonstrate the potential of fine-grain configuration
by running the x264 video encoder [5] on the CASH
Architecture (which extends the Sharing Architecture [64]).
The video encoder is an excellent example of our target
application as it has a clear QoS requirement: to maintain a
particular frame rate. We would like to meet this frame rate
while minimizing cost and adapting to phases in the source
video.

The CASH Architecture supports this goal by allowing
allocation of Slices and L2 Cache banks. Slices are simple
out-of-order cores with 1 ALU, 1 Load-Store Unit, and a
small L1 cache. Multiple Slices and L2 Cache banks can be
combined to create a powerful virtual core. Users rent these
resources and pay a cost based on their area. We would like
to minimize resource usage (and thus cost) while ensuring
QoS.

To demonstrate the optimization space, we run x264 on
the CASH architecture with every possible virtual core
constructed from 1 to 8 Slices and 64KB to 8MB L2 Caches
in power of two steps. For our input video, we have identified
10 distinct phases of computation. For each phase and each
virtual core configuration we measure the performance in
instructions per clock. The results are shown in Fig. 1.

Figs. 1a–1j show contour plots that map virtual core
configuration into performance. The x-axes show the L2
cache size (on a logarithmic scale), while y-axes show the
number of Slices. Intensity represents performance, brighter
shading indicates higher performance, with white being the

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Phase 4

(e) Phase 5 (f) Phase 6 (g) Phase 7 (h) Phase 8

(i) Phase 9 (j) Phase 10 (k) Phase Breakdown

Figure 1: Phases of x264 executing on the CASH Architecture.

highest for a given phase. Fig. 1k shows a summary of the
information in the contour plots.

This data clearly demonstrates the difficulty of allocating
fine-grain resources to an application with distinct phases.
Six of ten phases have local optima distinct from the true
optimal performance. In addition, the location of the true
optimal changes from phase to phase. In fact, no two
consecutive phases have the same optimal configuration.
In summary, any scheme that dynamically allocates Slices
and L2 Cache banks to construct virtual cores must be
capable of both avoiding local optima (i.e., handling non-
convex spaces) and adapting to phase changes. Avoiding
local extrema is important as the true optimum is often far
from local optima.

B. Benefits of Intelligent Resource Allocation

We have demonstrated the complexity of fine-grain re-
source management. We now show its potential benefits
for IaaS customers. We again consider x264, this time
with a QoS requirement that every phase meets the desired

throughput. Optimal resource management must find the
smallest virtual core configuration that ensures each phase
runs at this speed. We compare optimal resource allocation
to two other schemes: convex optimization and race-to-idle.

The convex optimization scheme uses a feedback control
system to meet the QoS requirement [21]. It has a model
of cost and performance tradeoffs and allocates resources
to keep the performance at the desired QoS, but its convex
model cannot account for local optima. We assume the race-
to-idle scheme has some prior knowledge of the application
and knows the lowest cost configuration that meets the QoS
requirement in the worst-case. The race-to-idle approach
allocates this worst-case virtual core for every phase. If a
phase finishes early, this approach simply idles until the next
phase begins. We (optimistically) assume that idling happens
instantaneously and incurs no cost.

The results of this comparison are shown in Fig. 2. The
plot on the top shows the cost. The plot on the bottom shows
performance normalized to the QoS goal. The x-axes of both
plots show cycle count (in millions of cycles), while the y-

0.065
0.195
0.325
0.455

C
o
st
R
a
te

($
/h

r)

0 18 36 54 72 90 108 126 144 162 180
0.2
0.6
1.0
1.4
1.8
2.2

time (millions of cycles)

N
or
m
a
li
ze
d

P
er
fo
rm

a
n
ce

Optimal Race to Idle ConvexOptimization

Figure 2: Comparison of fine-grain resource allocators.

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

L2	
L2	
L2	

Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	

Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	

Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	
Slice	

Slice	
Slice	
Slice	

Slice	
Slice	
Slice	

Slice	
Slice	
Slice	

Figure 3: Slices, Cache Banks and Interconnection Network

axes show the cost and performance, respectively.
Two observations jump out immediately. First, convex

optimization techniques cannot handle resource allocation
for this application on this architecture as the incurred cost
is much higher than optimal and the QoS requirement is
repeatedly violated. Second, the race-to-idle approach does
not violate QoS (given our optimistic assumptions), but
incurs a much higher cost than necessary. In fact, for x264
both race-to-idle and convex optimization produce over
4.5× optimal cost. This is a significant additional cost
for the customer to bear. Clearly, there is a need to help
IaaS customers by combining fine-grain configurability with
automated resource management. CASH’s goal is to achieve
near-optimal fine-grain resource management with minimal
QoS violations.

III. THE CASH HARDWARE ARCHITECTURE

A. Architecture Overview

The CASH architecture extends the Sharing Architec-
ture [64] – a prior configurable core architecture – by (1)
innovating in fast reconfiguration, (2) providing a well de-
signed hardware-software interface, and (3) allowing remote
cores’ performance to be monitored over an on-chip net-
work. In this section, as background, we begin by describing
the overall ideas of the CASH Architecture and then in
Section III-B we describe how we co-designed the CASH
Architecture to have support for fast reconfiguration.

L1	
Dcache	 ALU	 LD/

ST	

Local	
RF	

Scalar	
Operand	
Network	

Instruc<on	
Window	

Fetch	 Decode	 Global	
Rename	

Local	
Rename	

ROB	 Scoreboard	

Sw
itc
he

d	

Sw
itc
he

d	

	 S
w
itc
he

d	

L1	
Icache	

Sw
itc
he

d	

Sw
itc
he

d	

	 	 	 Global	 Rename	
&Scoreboard	 Sync	

Operand	
Network	

LS	 bank	
	 sor<ng	

L1/L2	 Switched	
Crossbar	

Br_pred	 &	
btb	

LS	
Hash	

LS	 Sor<ng	
Network	

Fetch&BTB	 Sync	

Sw
itc
he

d	

CASH	 Run-me	 Interface	 Register	 Flush	 L2	 Flush	

Performance	
Counter	

Figure 4: Slice Overview and Inter-Slice Network

CASH is a fine-grain configurable architecture which
provides the flexibility to dynamically “synthesize” a virtual
core with the correct amount of ALUs and cache, based
on an application’s demand and the need to optimize cost.
Unlike multicore and manycore architectures where the pro-
cessor core is statically fixed at design and fabrication time,
the CASH Architecture enables the core to be reconfigured
and use resources across a single chip. This fine-grain
reconfigurability is especially useful for IaaS applications
which have fixed performance goals (in terms of acceptable
latency or throughput) and need to meet those goals while
minimizing cost.

At the top level, like existing multicore chips used for IaaS
applications, CASH can group multicore cores into Virtual
Machines (VMs). Unlike fixed architecture multicore proces-
sors, the VMs in the CASH Architecture are composed of
cores which themselves are composed of a variable number
of ALUs, and cache. We call this flexible core a virtual core.
A virtual core is composed out of one or more Slices and
one or more L2 Cache Banks. Figure 3 shows an example
array of Slices and Cache Banks. A full chip contains 100’s
of Slices and Cache Banks. The key insight is to construct
highly scalable architectures on a homogeneous fabric.

The basic unit of computation in the CASH Architecture
is a Slice as shown in Figure 4. A Slice is effectively a
simple out-of-order processor with one ALU, one Load-
Store Unit, the ability to fetch two instructions per cycle,
and a small Level 1 Cache. Multiple Slices can be grouped
together to increase the performance of sequential programs
thereby empowering users to make decisions about trading
off ILP vs. TLP vs. Process level parallelism vs. VM level
parallelism while all utilizing the same resources.

The CASH Architecture is designed to enable very flex-
ible sharing of resources and does not impose hierarchical
grouping of Slices or Cache Banks. This feature enables IaaS
Clouds to spatially allocate computation resources. In order
to achieve this, we use general purpose switched intercon-
nects wherever possible. Neither Slices or Cache Banks need
to be contiguous in a virtual core for functionality. But for
the purpose of performance, we group adjacent Slices into
a single virtual core to reduce operand communication cost

and Cache access latency. Cache configuration is decoupled
from the Slices, and the Cache access latency is modeled in
proportion to the distance from the Cache to the Slices and
Cache size. We do not see the need for contiguous Slices to
be a limitation as all Slices are interchangeable and equally
connected. Therefore, fixing fragmentation problems is as
simple as rescheduling Slices to virtual cores. As larger
Cache size leads to higher communication cost, virtual core
configuration search space can be non-convex.

The CASH Architecture minimizes changes to the soft-
ware stack by utilizing multiple switched interconnect when-
ever possible. Distributed local register files enabled by the
two register renaming stages improve virtual core scalability.
Applications do not need to be recompiled to use different
Slice and Cache configurations. This property is key, as it
allows the CASH runtime to dynamically change architec-
tural configurations without requiring any application-level
changes.

B. Reconfiguration

1) Hardware Reconfiguration: To reconfigure virtual
cores, we rely on the CASH runtime to control the con-
nections of the Slice and Cache interconnect. The runtime
is time multiplexed with the client virtual machines. But,
unlike client VMs which run on reconfigurable cores, we
propose having the runtime execute only on single-Slice
virtual cores. By having the runtime execute on single Slices
only, it can then locally reconfigure protection registers and
interconnection state to setup and tear-down client virtual
cores. The runtime bypasses use of the reconfigurable cache
system to prevent having to flush the L2 Caches on every
time Slice.

When the number of Slices in a virtual core is reduced,
there is potentially register state which needs to be transmit-
ted to the surviving Slices within the virtual core. Because
we use a distributed local register file scheme, one archi-
tectural register can have multiple copies in different Slices.
In this case, only one copy (the primary one that originally
wrote the value to the register) for each architectural register
is conserved. In order to carry this out, we use a Register
Flush instruction which pushes all of the dirty architectural
register state to other Slices in the same virtual core using
operand forwarding messages. This can be done quickly
because there are only a limited number of global logical
registers, only one copy of data needs to be saved, and
the Scalar Operand Network is fast for transferring register
data. Architectural registers are mapped onto global logical
registers with global logical registers serving as a register
name space which is mapped across all of the Slices, while
local registers are the actual storage registers in individual
Slices. When virtual core’s L2 Cache configuration changes,
all dirty state in L2 Cache Banks that are being removed
must be flushed to main memory before reconfiguration.

lr0	

gr127	

gr1	
gr2	
gr3	
gr4	
gr5	
gr6	
gr7	

gr0	
lr1	
lr2	
lr3	

lr63	

lr1	
lr2	
lr3	

lr63	

lr0	

Slice1	

Slice2	

ld	 gr0,	 ADDR1	 	

add	 gr2,	 gr0,	 gr1	 	

ld	 gr1,	 ADDR2	 	

lr0	
lr1	
lr2	
lr3	

lr63	

lr1	
lr2	
lr3	

lr63	

lr0	

Slice1	

Slice2	

primary	 writer	
reader	

VCore	 Shrink	

❶Am	 I	 a	 primary	 writer	
and	 not	 a	 survivor?	 	
❷push	 the	 value	 if	 so.	

❶Am	 I	 a	 survivor?	
❷Is	 the	 value	
already	 there?	
❸Rename	 the	
register	 and	 save	
the	 pushed	 value.	 	

Two-‐Slice	 VCore	 One-‐Slice	 VCore	

Figure 5: Register Flush When Shrinking a Virtual Core
(VCore)

Figure 5 shows an example of flushing registers when
shrinking a two-Slice virtual core to a one-Slice virtual core.
Originally global registers gr0, gr1, and gr2 are primarily
written and renamed to lr0 by Slice1, lr0 by Slice2 and lr2
by Slice2. Slice1 has an additional copy of gr1 due to an
instruction read, and gr1 is renamed to lr1 by Slice1 locally.
Similarly, Slice2 has a copy of gr0 renamed to lr1 locally.
When the virtual core shrinks from two-Slices to one-Slice,
the survivor, Slice1, needs to get all the updated register
values from Slice2. As Slice2 is the primary writer of gr1
and gr2, it flushes both values to Slice1. Upon receiving the
values, Slice1 determines to only save gr2 to lr3 as it already
has a copy of gr1 due to a previous register read. Because
only the primary writers need to flush register values, the
total number of flushes is bounded by the total number of
global registers.

2) Interface to Software: The software adaptation
engine requires information such as performance and cost
from the configurable hardware. The hardware communi-
cates the performance and estimated cost to the software
adaptation engine. The software engine uses this information
to make more informed reconfiguration decisions after a
pre-determined reconfiguration interval. We use instruction
commit rate as a measure of performance. One challenge is
how best to interface between the software adaptation engine
and the hardware. This is made even more difficult because
performance counter registers are typically read at the core
level and the CASH Architecture has no fixed core.

To solve the challenge of performance counting without
fixed cores, the CASH Architecture connects performance
counters to a dedicated on-chip network, as shown in
Figure 4. The CASH Runtime Interface Network allows a
virtual core with sufficiently high privilege (e.g., executing
the CASH runtime) to measure performance counters on
other virtual cores. The CASH runtime can read instruction
commit rate, cache miss rate, branch miss-predict rate or

Figure 6: The CASH runtime.

other common performance counter information. Perfor-
mance counters are queried with a simple request and
reply protocol targeting a particular Slice. Each performance
counter sample is timestamped which enables the CASH
runtime to synthesize overall performance for a virtual core
from performance counter readings from individual Slices.

The CASH Runtime Interface Network is also used
to send reconfiguration commands such as EXPAND and
SHRINK which target a particular Slice or L2 cache bank.
Removing a Slice from a virtual core requires that the
primary written registers be flushed to the surviving Slices
through the Operand Network. L2 Cache banks which are
being removed flush their dirty data to main memory across
the L2 memory network. The data networks already exist in
the Sharing Architecture, but the CASH Runtime Interface
Network is newly added to support fast reconfiguration and
performance gathering.

IV. RUNTIME RESOURCE ALLOCATION

The CASH runtime configures Slices and L2 Cache to
meet an application’s QoS demands while minimizing cost.
The runtime addresses the software challenges listed in the
introduction: (1) guaranteeing QoS guarantees, (2) adapting
to phases in application workload, and (3) avoiding local
optima. Additionally, the runtime is designed to be very low
overhead.

The CASH runtime is illustrated in Fig. 6. It takes a
QoS goal q and measures the current QoS q(t) at time t. It
computes the error e(t) between the goal and the delivered
QoS. This error is passed to a Controller which computes
a speedup s(t) to apply to the application. The controller is
modified online by an Estimator that adapts to application
phases. The speedup signal is passed to a LearningOptimizer
which determines the minimal cost configuration k(t) of
Slices and L2 to achieve the desired speedup. The Controller
enforces QoS requirements, the Estimator recognizes appli-
cation phases, and the LearningOptimizer selects the lowest
cost configuration. We discuss each in more detail below.

A. A Control System for QoS

CASH is influenced by prior research that has effectively
deployed control systems to meet QoS demands [17, 22, 24,
25, 35, 48, 51, 63]. These control approaches measure run-
time QoS feedback and compute a control signal indicating

a resource allocation that maintains the desired QoS. The
CASH runtime first computes the error e(t) between the
QoS requirement q0 and the current QoS level q(t):

e(t) = q0−q(t) (1)

The controller eliminates this error. There are tradeoffs
between how fast the controller drives the error to zero
and its sensitivity to noise. The CASH runtime employs a
deadbeat controller to eliminate the error as fast as possible
[34] and corrects noise in the Estimator. Therefore, CASH
computes speedup s(t) given an error signal:

s(t) = s(t−1)+
e(t)

b
(2)

where b represents the base QoS of the application; i.e., its
QoS when running on one Slice with a 64KB L2.

Eqns. 1 and 2 together comprise a standard control system
similar to prior approaches, but with some limitations. It
will react to phases, but not as quickly as we might like.
Furthermore, it has no ability to adapt to the types of non-
convex optimization spaces illustrated in Fig. 1. In the next
two section, we extend this type of standard control design
to provide these two features.

B. Estimating Application Phase Changes

The CASH runtime must adapt to phases like those
discussed in Sec. II. The key parameter for handling phases
is the constant value b in Eqn. 2 representing base QoS.
Analytically, a change in phase represents a fundamental
shift in the value of this parameter. It is not feasible,
however, to directly measure base speed as doing so would
likely violate QoS. Instead, the CASH runtime continually
estimates this value, b̂(t). When the application changes
phase, this estimate will change, and the speedup values
produced by Eqn. 2 will reflect the phase shift. For example,
if the base speed increases by 2× then we would like the
speedup produced by the controller to drop by this same
factor. Clearly, an accurate estimate of base speed substituted
into Eqn. 2 will produce the desired effect.

CASH learns b using a Kalman filter [58] based on the
time-varying model:

b(t) = b(t−1)+δb(t)
q(t) = s(t−1)b(t−1)+δq(t) (3)

which describes b and q subject to both disturbance, e.g., a
page fault, and noise, i.e., natural variation in application’s
QoS signal, (respectively: δb and δq).

Denoting the system QoS variance and measurement
variance as v(t) and r, the Kalman filter formulation is

b̂−(t) = b̂(t−1)
E−(t) = E(t−1)+ v(t)

Kal(t) =
E−(t)s(t)

[s(t)]2 E−(t)+ r
b̂(t) = b̂−(t)+Kal(t) [q(t)− s(t)b̂−(t)]
E(t) = [1−Kal(t)s(t−1)]E−(t)

(4)

where Kal(t) is the Kalman gain for the QoS, b̂−(t) is the a
priori estimate of b(t) and b̂(t) is the a posteriori one, and
E−(t) is the a priori estimate of the error variance while E(t)
is the a posteriori one. CASH uses a Kalman filter because
it produces a statistically optimal estimate of the system’s
parameters, and is provably exponentially convergent [10].
Practically, this means that the number of time steps required
to detect phase changes (i.e., changes in the estimate of
base speed) will be – in the worst case – logarithmic in
the difference between the base speeds for two consecutive
phases; i.e., convergence time ∝ log(|bphase i− bphase i+1|).
Note that the only required (i.e., not directly measured from
the hardware) parameter is r, the measurement noise, which
we take as a constant property of the hardware architecture.

C. Learning to Minimize Cost

The combination of the Controller and Estimator ensures
QoS and reacts quickly to phases. It does not, however,
have a notion of optimality. The LearningOptimizer from
Fig. 6 determines the architectural configuration that meets
the speedup signal s(t) with minimal cost; i.e., it maps
the speedup signal into the minimal cost Slice and L2
configuration while avoiding local optima.

The CASH runtime models the architecture as a set of K
configurations where each configuration k ∈ K is a specific
number of Slices and L2 size. Each k has a speedup sk and
cost ck. CASH schedules configurations over a quantum of
τ time units, such that τk time is spent in each configuration.
CASH formulates the cost minimization problem as:

minimize(τidlecidle +
1
τ ∑k∈K(τkck)) s.t.

1
τ ∑k∈K τksk = s(t)

τidle +∑k∈K τk = τ

τk,τidle ≥ 0, ∀k

(5)

The first line in Eqn. 5 minimizes the total cost of the
schedule. The second line ensures that the average speedup
of the schedule is equal to the speedup produced by the
Controller (Eqn. 2). The third and fourth lines ensure that
the work is completed by the deadline (for QoS).

While this system has many variables, we know from the
theory of linear programming that, because it has only two
constraints, there is a solution where only two of τk are
non-zero and all others are zero [8]. Specifically, the two
configurations that will have non-zero times are over and
under where:

over = argmink{ck|sk > s(t)}
under = argmaxk{sk/ck|sk < s(t)}

tover = τ ·
s(t)− sunder

sover− sunder
tunder = τ− tover

(6)

Thus, if we know sk and ck for all k then the optimization
problem is easy to solve [30]. ck is the cost per configuration
per unit time and set by a systems administrator (e.g., it
could be $ per chip area). The difficulty is finding sk, which

Table I: Base Slice Configuration

Number of Functional Units/Slice 2 ROB size 64
Number of Physical Registers 128 Store Buffer Size 8
Number of Local Registers/Slice 64 Maximum In-flight Loads 8
Issue Window Size 32 Memory Delay 100
Load/Store Queue Size 32

can vary tremendously in different phases of an application.
Therefore, the CASH runtime treats the speedup as a time-
varying parameter, observes the achieved QoS q(t) and uses
a Q-learning approach to learn the true speedup online [22,
53]. This approach has the advantage that it is computa-
tionally cheap, but treats all configurations as independent.
More sophisticated learning methods that capture correlation
between configurations and applications (e.g., [40]) will be
the subject of future work. Using Q-learning, the learned
speedup for configuration k at time t is represented as ŝk(t):

q̂k(t) = (1−α) · q̂k(t−1)+α ·q(t)
ŝk(t) = q̂k(t)

q̂0(t)
(7)

D. Runtime Summary

The CASH runtime puts the Controller, Estimator, and
LearningOptimizer together in Algorithm 1. The runtime
executes an infinite loop. At each iteration, it updates its
estimate of base speed, then uses that base speed to compute
a control signal. The control signal is passed to the optimizer,
which computes the optimal configurations for achieving
the control signal. The runtime puts the architecture into
that configuration and then updates its estimates of the
speedups that configuration will produce in the future. The
runtime computational complexity is O(1), making it low
overhead. As discussed above, it is exponentially convergent
to the QoS goal despite changes in application base speed.
The LearningOptimizer adapts speedup models online to
maintain optimality despite application changes and non-
convex optimization spaces.

Algorithm 1 The CASH Runtime.
loop

Read current QoS q(t).
Compute b̂(t), the estimate of the current base speed, using Eqn. 3.
Compute s(t) according to Eqn. 2, but substitute b̂(t) for b.
Solve for tover & tunder using Eqn. 6, but substitute speedup estimates.
Put the architecture in configuration over for tover time.
Sleep for tover time.
Put the architecture in configuration under for tunder time.
Sleep for tunder .
Compute ŝover(t) and ŝunder(t), according to Eqn. 7.

end loop

V. EXPERIMENTAL SETUP

A. Simulation Infrastructure

We have created a cycle-accurate simulator, SSim, to
model the CASH Architecture and measure its effectiveness.
SSim models each subsystem of the CASH Architecture

Table II: Base Cache Configurations: L2 cache hit delays
depend on the distance to the cache bank

Level Size(KB) Block Size(Byte) Associativity Hit Delay
L1D 16 64 2 3
L1I 16 64 2 3
L2 64*2 64 4 distance*2+4

(fetch, rename, issue, execution, memory, commit, and on-
chip network) along with accurately modeling the Out-of-
Order execution and inter-Slice and Slice-to-memory la-
tency. SSim is driven by the full system version of the
the Alpha ISA GEM5[6] simulator. Table I shows the base
Slice configuration and Table II shows the base Cache
configuration for our simulations.

B. Benchmark Applications

We use the complete SPEC CINT2006 benchmark suite
[50], a subset of PARSEC benchmarks [5], the apache web
server [3], and the postal mail server [12] to explore the
CASH architecture. They are representative benchmarks that
provide a measure of performance across a wide practi-
cal range of workloads. Another reason we select these
benchmarks is because there are abundant phases in the
programs [15]. Programs with phases can benefit most from
the reconfigurable hardware. Each PARSEC benchmark de-
notes a region of interest (ROI) indicating the performance
critical part of the benchmark. We consider only the ROI
for PARSEC. We evaluate apache serving webpage requests
with a concurrency of 30.

C. Experimental Methodology

To quantify CASH’s ability to minimize cost, we construct
an oracle that returns the lowest possible cost configuration
for any performance goal. We construct this oracle by run-
ning all applications in every possible configuration of the
CASH architecture. We manually determine (by examining
the simulation output) any distinct processing phases in the
application and we then (through brute force) determine
the combination of resources that is lowest cost for any
performance goal. This brute force exploration allows us
to construct the oracle representing true minimal cost.

VI. EVALUATION

This section evaluates CASH’s ability to aid IaaS cus-
tomers by delivering QoS for minimal cost. We first evaluate
both architectural and runtime overhead. We then demon-
strate CASH providing near optimal cost for a variety of
benchmarks with QoS requirements. We next show time-
series data demonstrating how CASH quickly converges to
the required performance. Finally, we compare CASH to a
heterogeneous multicore architecture, which provides stat-
ically heterogeneous core types; i.e., determined at design
time [29, 32], rather than CASH’s fine-grain configurable
cores.

A. Overhead of Reconfiguration

One of the challenges to exploiting fine-grain reconfigura-
bility is minimizing the architectural and runtime overheads.

Architectural Overhead: There are four sources of
microarchitectural overhead: Slice expansion, Slice contrac-
tion, L2 expansion, and L2 contraction. Slice expansion is
fast – requiring only a pipeline flush – approximately 15
cycles. Slice contraction takes at most 64 cycles more than
expansion to flush local register values to the remaining
Slices. Both L2 expansion and contraction require flushing
dirty cache lines. Assuming all lines are dirty, a flush takes
(BankSize)/(NetworkWidth) cycles; e.g., with L2 bank size
of 64KB and network width of 64 bits, flushing the L2
takes 64KB/8B = 8000 cycles. Note this is the worst case
cost, in practice we expect that we will not flush the whole
cache as only a small number of lines will be dirty. We
use a hash table to map physical address to cache banks,
the reconfiguration of which is overlapped with dirty line
flushing.

Runtime Overhead: We measure the average cycle
count to execute Algorithm 1’s ‘C’ implementation. We note
that the execution time of the algorithm is not application-
dependent. We therefore time 1000 iterations of the runtime
for the x264 benchmark and report the average cycle count.
With one Slice, the runtime takes just under 2000 cycles per
iteration. Two and three Slices produce times of 1100 and
977 cycles respectively. This low overhead means a runtime
executing on even a single Slice could easily service many
applications. As we expect CASH architectures to scale to
100s of Slices, the area overhead of dedicating one slice to
the runtime is extremely small.

B. Cost Model

CASH supports IaaS customers by making computer
resources rentable at a fine-granularity. To demonstrate this,
we assign a cost per unit area. Following Amazon’s EC2
pricing (which uses a linear model for additional capacity
within a resource class), we assume a linear increase in price
per unit area for CASH [2]. Specifically, we assume $.013
per hour for the minimal architectural configuration of 1
Slice and a 64KB L2 Cache which is the same price Amazon
charges for on-demand usage of their t2.micro configuration.
Based on silicon area fed by a Verilog implementation of
the CASH hardware, this price structure is equivalent to
$.0098 per hour for a Slice and $.0032 per hour for 64KB of
Cache. We stress that the absolute value of the price does not
affect our conclusions. Our comparisons rely on the ratios
of the cost incurred by various architectures and resource
managers.

C. Cost Savings for QoS Requirement

Our first case study shows that CASH handles a variety
of applications, providing near minimal cost with rare QoS
violations. For each application, we first determine the

C
o
st

($
)

Q
o
S
V
io
la
ti
o
n
s
(%

)

0.016
0.048
0.080
0.112
0.144

Optimal Convex Optimization Race to Idle CASH

ap
ac
he

as
ta
r

bz
ip

fe
rr
et gc

c

h2
64
re
f

hm
m
er lib

m
ai
lse
rv
er

m
cf

om
ne
tp
p

sje
ng

x2
64

ge
om
ea
n

0
4
8

12
16
20
24

Figure 7: Cost and QoS violations for different fine-grain resource allocators. (lower is better)

0.065
0.195
0.325
0.455

C
o
st

R
a
te

($
/h

ou
r)

0 18 36 54 72 90 108 126 144 162 180

0.4
0.8
1.2
1.6
2.0

time (millions of cycles)

N
or
m
a
li
ze
d

P
er
fo
rm

a
n
ce

ConvexOptimization Race to Idle CASH

Figure 8: Time series data for x264.

QoS requirement as the highest worst case IPC seen for
any application; i.e., we tell the runtime system to always
be at or above worst case performance. We then deploy
the application on CASH, which dynamically allocates the
minimal number of Slices and L2 Cache banks to maintain
the QoS goal.

We compare CASH to three other approaches. First,
we compare to our oracle which determined the optimal
resource allocation for each application and QoS target. Sec-
ond, we compare to a convex optimization scheme that uses
control theory (similar to what is described in Sec. IV-A),
but does not incorporate learning and must rely on a single
convex model that captures average case behavior for the
entire application. Third, we compare to the race-to-idle
approach, which uses the configuration that meets QoS
in the worst case and idles (incurring no additional cost)
when completing early. For each application we sample
performance 1000 times, recording both the total cost and
QoS violations.

Fig. 7 presents the data comparing these four resource
allocation schemes. In the figure, the top chart shows the
total cost for each application while the bottom chart shows
the percentage of QoS violations.

The geometric mean of costs for all applications is listed

200
600

1000
1400

R
eq

u
es
t
R
a
te

(r
eq

s/
s)

0.02

0.06

0.10
C
o
st

R
a
te

($
/h

ou
r)

16 32 48 64 80 96 112
0.65
0.75
0.85
0.95
1.05

time (ten million cycles)

N
or
m
a
li
ze
d

R
eq

.L
a
te
n
cy

ConvexOptimization Race to Idle CASH

Figure 9: Time series data for apache.

in Table III. This table shows that convex optimization
and race-to-idle incur significant costs compared to optimal.
Convex optimization is clearly not a good choice for fine-
grain resource management as it has high costs and high
QoS violations. In contrast, race-to-idle produces no QoS
violations (under the assumption that the worst case resource
allocation is known a priori). These strong QoS guarantees
for race-to-idle, however, incur cost over 1.7× the optimal.
CASH operates at a reasonable middle ground, as it incurs
only 4% more cost than optimal and less than 2% QoS
violations. For all applications in this study, CASH delivers
the specified QoS at least 95% of the time. We note one
application, omnetpp, where convex optimization produces
lower cost than CASH, but this comes with the penalty
of 20% QoS violations. In this case, convex optimization
has reduced cost, but at the penalty of large-scale QoS
violations.

D. Adapting to Application and Workload Phases

We present time-series data for individual applications to
show how CASH can aid IaaS customers by adapting to

C
o
st

($
)

Q
o
S
V
io
la
ti
o
n
s
(%

)

0.02
0.06
0.10
0.14
0.18
0.22
0.26

CoarseGrain race CoarseGrain adapt FineGrain race CASH

ap
ac
he

as
ta
r

bz
ip

fe
rr
et gc

c

h2
64
re
f

hm
m
er lib

m
ai
lse
rv
er

m
cf

om
ne
tp
p

sje
ng

x2
64

ge
om
ea
n

0
2
4
6
8

10
12

Figure 10: Cost and QoS for combinations of coarse and fine grain reconfigurable architectures and resource allocators.

Table III: Cost comparison for different resource allocators.

Geometric Mean Ratio to Optimal
Optimal $0.0162 1.00
Convex Optimization $0.0199 1.23
Race to Idle $0.0289 1.78
CASH $0.0168 1.03

application and workload fluctuations. We show results for
the x264 video encoder and the apache webserver.

We use the same setup as the previous section, but now
we report the measured cost rate ($/hour) and performance
(normalized to the QoS target) as a function of time.
The results are shown in Figs. 8–9. We compare convex
optimization, race-to-idle, and CASH.

1) x264: These results show that adaptive, fine-grain
resource allocation provides tremendous cost savings for
x264 compared to both race-to-idle and convex optimization.
If we relate the x264 data from Fig. 8 to that in Fig. 1, we
see that between 36 and 54 Mcycles (phase 3 from Fig. 1)
has several local extrema and a very expensive true optimal.
The convex optimization approach reaches the true optimal
at this time, but then stays in the expensive configuration
until 144 Mcycles. The CASH runtime, in contrast, detects
the application’s behavior change and reallocates resources
to reduce cost.

2) apache: The results for the apache webserver
are shown in Fig. 9. For this experiment, we construct an
oscillating stream of requests, typical for web servers (e.g.,
Wikipedia [56]). In general these oscillations occur over the
course of the day. Simulation is too expensive to handle days
worth of requests, so we condense the stream into much
faster oscillations. The request rate as a function of time is
shown in the top chart of Fig. 9. We set a QoS requirement of
110K cycles per request, which corresponds to the smallest
possible worst-case latency on CASH. When request rates
are low, it will be easy to hit the target latency. When request
rates are high it will require more resources.

The cost and delivered QoS are shown in the middle and
bottom charts of Fig. 9. All methods adapt to changing
request rates and keep the actual latency close to the target.
The race-to-idle approach is the most expensive, however, as
it always reserves resources to meet the latency in the worst-
case. The worst case is only realized around 800 Mcycles,
though. Convex optimization saves compared to race-to-idle,
but the CASH runtime is the cheapest, providing about an
18% cost reduction compared to convex optimization.

These results demonstrate CASH’s advantage for IaaS
customers. Fine-grain configurability allows the customers to
provision just the right amount of resources. The adaptive
runtime allocates for current case, providing considerable
savings over the naive approach of reserving for the worst
case and giving up resources when they are not needed.

E. Comparison to Heterogeneous Architectures

To demonstrate the advantages of fine-grain configurabil-
ity for IaaS customers, we compare the CASH approach to a
heterogeneous architecture, similar to the ARM big.LITTLE.
The big.LITTLE’s coarse-grain approach combines fast,
expensive cores with slower, cheaper cores. To compare
against this coarse-grain approach, we simulate the CASH
architecture with one big core and one small core. The big
core is the largest configuration needed to meet the QoS
demands of all target applications: 8 Slices with a 4MB L2.
The little core is the most cost efficient configuration, on
average, across all our benchmarks: 1 Slice with a 128KB
L2.

We want to isolate the cost savings of both the CASH
architecture and runtime. Therefore, we perform resource
allocation on both the heterogeneous architecture and
the CASH architecture using both race-to-idle and the
CASH runtime. This gives four points of comparison:
CoarseGrain, race; CoarseGrain,adaptive; FineGrain, race;
and CASH, which is fine-grain and adaptive. To be clear, the
race-to-idle approach cannot change core configuration, but
the CoarseGrain,adaptive approach uses the CASH runtime

to dynamically shift between big and little cores. We run
each benchmark using these combinations of architectures
and management systems. The results are shown in Fig. 10.

The figure shows cost in the top chart, and the av-
erage number of QoS violations in the bottom. These
results show the combined power of CASH’s fine-grain
configuration and an adaptive runtime. The geometric
mean of cost for CoarseGrain, race is 0.062$. Replac-
ing race-to-idle with adaptive resource allocation creates
the CoarseGrain,adaptive data point, with geometric mean
cost $0.048. FineGrain, race produces geometric mean cost
$0.029, while CASH’s geometric mean cost is $0.017.
Adaptation reduces geometric mean cost by about 25%.
Fine-grain reconfigurability, by itself, reduces costs by more
than 50%. CASH’s combination of fine-grain configura-
bility and adaptive resource management reduces the
geometric mean of cost by over 70% compared to racing-
to-idle on a heterogeneous architecture.

These results summarize the case for the CASH approach.
The finer-granularity the architecture, the better it is able to
match the needs of the application. Combining such a fine-
grain architecture with an intelligent management system
allows even greater cost savings.

VII. RELATED WORK

A. SMT

Simultaneous multi-threading (SMT) improves out-of-
order core efficiency by time multiplexing the processor
pipeline [16]. CASH also allows resources that are not used
by one core to be repurposed, but CASH is a fundamentally
different design point from SMT, as CASH focuses on
spatial partitioning. For instance, CASH supports cores with
many ALUs and a small cache, few ALUs with a large
cache, or many other combinations that are not possible
in SMTs. Additionally, in multicore SMTs, core size is
chosen at fabrication time, while CASH can be config-
ured at runtime. Therefore CASH does not have to face
the classic problems that SMT architectures face around
resource thrashing; e.g., destructive cache interference when
two threads share the same SMT core.

B. Configurable Architectures Without Policies

The CASH architecture leverages many ideas from Dis-
tributed ILP work and fused-core architectures. Distributed
ILP removes large centralized structures by replacing them
with distributed structures and functional units. This idea has
been explored in Raw [55], Tilera [4, 23, 59, 60], TRIPS [46,
47], and Wavescalar [54]. Distributed tiled architectures
distribute portions of the register file, cache, and functional
units across a switched interconnect. The CASH architecture
adopts a similar network topology for communicating in-
struction operands between function units in different Slices.
Unlike Raw and Tilera, we do not expose all of the hardware
to software, do not require recompilation, and use dynamic

assignment of resources, dynamic transport of operands, and
dynamic instruction ordering. TRIPS [9, 46] has an array
of ALUs connected by a Scalar Operand Network and uses
dynamic operand transport similar to the CASH architecture.
Unlike CASH, TRIPS requires compiler support, and a new
EDGE ISA which encodes data dependencies directly. In
contrast, CASH uses a dynamic request-and-reply message
based distributed local register file to exploit ILP across
Slices without the need of a compiler.

The CASH architecture leverages many ideas from Core
Fusion [27] to distribute resources across cores, but unlike
Core Fusion, CASH is designed to scale to larger numbers of
Slices (cores). CASH distributes the structures that are cen-
tralized in Core Fusion, such as structures for coordinating
fetch, steering, and commit across fused cores. Also, we take
a more Distributed ILP approach to operand communication
and other inter-Slice communication by using a switched in-
terconnect between Slices instead of Core Fusion’s operand
crossbar. Also, the CASH is designed as a 2D fabric which
is created across a large manycore with 100’s of cores which
can avoid some of the fragmentation challenges that smaller
configurations like Core Fusion can have. The interconnect
of Slices to Cache is also designed to be flexible across the
entire machine unlike Core Fusion which has a shared cache.
This can lead to better efficiency and provides a way to
partition cache traffic and working sets. The CASH architec-
ture is explicitly co-designed with the CASH runtime. Thus,
it supports software driven reconfiguration and monitoring,
which is not supported by previous designs.

C. Resource management

PEGASUS [36], a feedback-based controller has been
proposed to improve energy proportionality of warehouse
scale computer systems. Hardware/Software co-design for
datacenter power management [13, 14, 39] improves dat-
acenter power proportionality while maintaining QoS.
MITTS [65] is a distributed hardware mechanism which
shapes memory traffic based on memory request inter-arrival
time, enabling fine-grain bandwidth allocation. CASH man-
ages fine-grain computational resources, which is comple-
mentary to those techniques. Runtime systems for datacenter
resource sharing [61] improve server utilization while guar-
anteeing QoS. Bubble-Flux measures instantaneous pressure
on the shared hardware resources and controls the execution
of batch jobs. All above mentioned techniques are policies
for system operators/architects, CASH on the other hand, fo-
cuses on policies for Cloud users. It helps Cloud customers
to make rational decisions on virtual core configurations of
sub-core configurable architecture.

Scheduling workloads in a IaaS Cloud requires under-
standing both the software stack and the hardware archi-
tecture. Scheduling algorithms for heterogeneous processors
have been proposed for MS Bing’s index search [45].
While heterogeneous processors improve interactive data

center workloads performance by supporting heterogeneous
query lengths, they do not support fine-grain workload
heterogeneity. This algorithm is not applicable to fine-grain
configurable architecture.

Offline architectural optimization approaches have been
proposed [11, 33, 62], but they have limited applicability
to online adaptation. Predictive models [15, 49] have
been proposed to perform online adaptation using offline
training. Flicker [42] also assembles ”virtual cores” using
dynamic management, but is designed to maximize system
throughput for a power budget. CASH tackles the comple-
mentary problem of ensuring performance for minimal cost.
While similar, these optimization problems have different
geometries and require different techniques to solve effi-
ciently. Machine learning based techniques [7, 26] have been
proposed for adaptation of shared caches and off-chip mem-
ory bandwidth. These approaches maximize throughput, but
do not consider constrained optimization problems; i.e.,
meeting a performance goal for minimal cost. In addition,
the neural networks in these approaches requires significant
offline training and the delivered performance is sensitive
to the training set. In contrast, CASH requires no a priori
knowledge or training.

Resource-as-a-Service [1] has been introduced as a model
to sell individual resources (such as CPU, memory, and
I/O resources) in accordance with market-driven supply-
and-demand conditions. CASH enables sub-core fine-grain
resource selling by proposing a run-time system supporting
sub-core configurable architecture.

D. Control-based Resource Management

Like many prior approaches (e.g., [22, 24, 25, 35, 38,
48, 51, 63]), CASH uses control theory to manage re-
sources and meet performance goals. Control theory is a
general technique that allows formal reasoning about the
dynamic behavior of the controlled system [17, 21]. While
the technique is general, implementations are often highly
specific to individual applications (e.g., an embedded video
encoder [38]). Some prior work has provided more general
implementations by implementing control systems at the
middleware layer [18, 35, 63]. The middleware handles
the complicated construction of the control system, but the
application writer must be aware of the components on
the system that can be controlled and is responsible for
modeling those components. Other approaches have pro-
vided automated modeling [17] or split the modeling process
into a piece that is provided by the application developer
and a piece that is provided by the system developer [22,
24, 25]. CASH differs as it does not require application
programmer input at all except for the specification of the
performance target. The cost of this generality is that the
CASH runtime adapts models on the fly and can sometimes
miss performance goals.

VIII. CONCLUSION

We have presented CASH, an architecture and runtime co-
designed to support IaaS customers. The CASH architecture
makes it possible to rent computational resources at an
extremely fine granularity. The CASH runtime allocates
these resources to applications to meet QoS requirements
and minimize cost. Our results show that CASH success-
fully addresses the challenges listed in the introduction:
supporting fast reconfiguration, meeting QoS goals, adapting
to application phases, and handling non-convex optimiza-
tion spaces. Furthermore, our comparison with coarse-grain
heterogeneous architectures shows that CASH’s fine-grain
configurable approach provides significant cost savings –
on average over 70%. We conclude it is both possible and
profitable to (1) expose fine-grain architectural tradeoffs to
software and (2) dynamically navigate these tradeoff spaces
to save IaaS customers’ money.

ACKNOWLEDGEMENTS

This work was partially supported by the NSF un-
der Grants No. CCF-1217553, CCF-1453112, and CCF-
1438980, AFOSR under Grant No. FA9550-14-1-0148, and
DARPA under Grants No. N66001-14-1-4040 and HR0011-
13-2-0005. Henry Hoffmann’s effort on this project is funded
by the U.S. Government under the DARPA BRASS program,
by the Dept. of Energy under DOE DE-AC02-06CH11357,
by the NSF under CCF 1439156, and by a DOE Early
Career Award. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of our
sponsors.

REFERENCES

[1] O. Agmon Ben-Yehuda et al. “The Resource-as-a-service (RaaS)
Cloud”. In: HotCloud’12. Boston, MA, 2012, pp. 12–12.

[2] Amazon. ”Amazon EC2 Pricing”. 2014.
[3] Apache:HTTP server project. httpd.apache.org. 2014.
[4] S. Bell et al. “TILE64 Processor: A 64-Core SoC with Mesh

Interconnect”. In: ISSCC. 2008.
[5] C. Bienia. “Benchmarking Modern Multiprocessors”. PhD thesis.

Princeton University, 2011.
[6] N. Binkert et al. “The GEM5 Simulator”. In: SIGARCH Comput.

Archit. News 39.2 (Aug. 2011), pp. 1–7.
[7] R. Bitirgen et al. “Coordinated Management of Multiple Inter-

acting Resources in Chip Multiprocessors: A Machine Learning
Approach”. In: MICRO 41. 2008, pp. 318–329.

[8] S. Bradley et al. Applied mathematical programming. Addison-
Wesley Pub. Co., 1977.

[9] D. Burger et al. “Scaling to the end of silicon with EDGE architec-
tures”. In: Computer 37.7 (2004), pp. 44–55.

[10] L. Cao and H. M. Schwartz. “Analysis of the Kalman filter based
estimation algorithm: an orthogonal decomposition approach”. In:
Automatica 40.1 (2004), pp. 5–19.

[11] J. Chen et al. “Modeling Program Resource Demand Using Inherent
Program Characteristics”. In: SIGMETRICS ’11. 2011, pp. 1–12.

[12] R. Coker. Postal. doc.coker.com.au/projects/postal. 2009.
[13] Q. Deng et al. “MemScale: Active Low-power Modes for Main

Memory”. In: ASPLOS XVI. 2011, pp. 225–238.
[14] Q. Deng et al. “CoScale: Coordinating CPU and Memory System

DVFS in Server Systems”. In: MICRO-45. 2012, pp. 143–154.

[15] C. Dubach et al. “A Predictive Model for Dynamic Microarchitec-
tural Adaptivity Control”. In: MICRO ’43. 2010, pp. 485–496.

[16] S. J. Eggers et al. “Simultaneous multithreading: a platform for next-
generation processors”. In: IEEE Micro 17.5 (1997), pp. 12–19.

[17] A. Filieri et al. “Automated design of self-adaptive software with
control-theoretical formal guarantees”. In: ICSE. 2014.

[18] A. Goel et al. “SWiFT: A Feedback Control and Dynamic Reconfig-
uration Toolkit”. In: 2nd USENIX Windows NT Symposium. 1998.

[19] X. Gu et al. “Application-driven Energy-efficient Architecture Ex-
plorations for Big Data”. In: Proceedings of the 1st Workshop on
Architectures and Systems for Big Data. ASBD ’11. Galveston
Island, Texas: ACM, 2011, pp. 34–40.

[20] F. Guo et al. “A Framework for Providing Quality of Service in Chip
Multi-Processors”. In: MICRO 40. Washington, DC, USA, 2007,
pp. 343–355.

[21] J. L. Hellerstein et al. FCCS. John Wiley & Sons, 2004.
[22] H. Hoffmann. “JouleGuard: energy guarantees for approximate

applications”. In: SOSP. 2015.
[23] H. Hoffmann et al. “Remote Store Programming”. In: HiPEAC

(2010).
[24] H. Hoffmann et al. “A Generalized Software Framework for Accu-

rate and Efficient Managment of Performance Goals”. In: EMSOFT.
2013.

[25] C. Imes et al. “POET: A portable approach to minimizing energy
under soft real-time constraints”. In: Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015 IEEE. 2015.

[26] E. Ipek et al. “Self-Optimizing Memory Controllers: A Reinforce-
ment Learning Approach”. In: ISCA ’08. 2008, pp. 39–50.

[27] E. Ipek et al. “Core Fusion: accommodating software diversity
in chip multiprocessors”. In: San Diego, California, USA, 2007,
pp. 186–197.

[28] R. Iyer et al. “QoS policies and architecture for cache/memory
in CMP platforms”. In: SIGMETRICS ’07. San Diego, California,
USA, 2007, pp. 25–36.

[29] B. Jeff. “Big.LITTLE system architecture from ARM: saving power
through heterogeneous multiprocessing and task context migration”.
In: DAC. 2012, pp. 1143–1146.

[30] D. H. Kim et al. “Racing and Pacing to Idle: Theoretical and
Empirical Analysis of Energy Optimization Heuristics”. In: CPSNA.
2015.

[31] O. Kocberber et al. “Meet the Walkers: Accelerating Index Traver-
sals for In-memory Databases”. In: MICRO-46. 2013, pp. 468–479.

[32] R. Kumar et al. “Processor Power Reduction Via Single-ISA Het-
erogeneous Multi-Core Architectures”. In: Computer Architecture
Letters 2.1 (2003), p. 2.

[33] B. C. Lee and D. M. Brooks. “Accurate and Efficient Regression
Modeling for Microarchitectural Performance and Power Predic-
tion”. In: SIGPLAN Not. 41.11 (Oct. 2006), pp. 185–194.

[34] W. Levine. The control handbook. Ed. by W. Levine. CRC Press,
2005.

[35] B. Li and K. Nahrstedt. “A control-based middleware framework for
quality-of-service adaptations”. In: IEEE Journal on Selected Areas
in Communications 17.9 (Sept. 1999).

[36] D. Lo et al. “Towards Energy Proportionality for Large-scale
Latency-critical Workloads”. In: ISCA ’14. Minneapolis, Minnesota,
USA, 2014, pp. 301–312.

[37] P. Lotfi-Kamran et al. “Scale-out processors”. In: ISCA ’12. 2012,
pp. 500–511.

[38] M. Maggio et al. “Power Optimization in Embedded Systems via
Feedback Control of Resource Allocation”. In: IEEE Trans. Contr.
Sys. Techn. 21.1 (2013), pp. 239–246.

[39] D. Meisner et al. “PowerNap: Eliminating Server Idle Power”. In:
ASPLOS XIV. Washington, DC, USA: ACM, 2009, pp. 205–216.

[40] N. Mishra et al. “A Probabilistic Graphical Model-based Approach
for Minimizing Energy Under Performance Constraints”. In: ASP-
LOS. 2015.

[41] R. Nagarajan et al. “A Design Space Evaluation of Grid Processor
Architectures”. In: MICRO. Dec. 2001, pp. 40–51.

[42] P. Petrica et al. “Flicker: A Dynamically Adaptive Architecture for
Power Limited Multicore Systems”. In: ISCA ’13. 2013, pp. 13–23.

[43] A. Putnam et al. “A Reconfigurable Fabric for Accelerating Large-
Scale Datacenter Services”. In: ISCA 41. 2014.

[44] M. K. Qureshi and Y. N. Patt. “Utility-Based Cache Partitioning: A
Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches”. In: MICRO 39. 2006, pp. 423–432.

[45] S. Ren et al. “Exploiting Processor Heterogeneity in Interactive
Services”. In: ICAC 13. USENIX, 2013, pp. 45–58.

[46] K. Sankaralingam et al. “Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture”. In: ISCA. 2003, pp. 422–433.

[47] K. Sankaralingam et al. “Distributed Microarchitectural Protocols
in the TRIPS Prototype Processor”. In: MICRO-39. 2006, pp. 480
–491.

[48] A. Sharifi et al. “METE: Meeting End-to-end QoS in Multicores
Through System-wide Resource Management”. In: SIGMETRICS
’11. 2011, pp. 13–24.

[49] D. C. Snowdon et al. “Koala: A Platform for OS-level Power
Management”. In: EuroSys. 2009.

[50] SPEC. ”CINT2006 (Integer Component of SPEC CPU2006)”.
[51] D. C. Steere et al. “A Feedback-driven Proportion Allocator for

Real-rate Scheduling”. In: OSDI ’99. 1999, pp. 145–158.
[52] G. Suh et al. “A new memory monitoring scheme for memory-aware

scheduling and partitioning”. In: HPCA. 2002, pp. 117–128.
[53] R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learn-

ing. Cambridge, MA, USA: MIT Press, 1998.
[54] S. Swanson et al. “WaveScalar”. In: MICRO 36. 2003, pp. 291–.
[55] M. Taylor et al. “Scalar operand networks: on-chip interconnect for

ILP in partitioned architectures”. In: HPCA. 2003, pp. 341 –353.
[56] G. Urdaneta et al. “Wikipedia workload analysis for decentralized

hosting”. In: Computer Networks 53.11 (2009), pp. 1830 –1845.
[57] Y. Watanabe et al. “WiDGET: Wisconsin decoupled grid execution

tiles”. In: SIGARCH Comput. Archit. News 38.3 (June 2010), pp. 2–
13.

[58] G. Welch and G. Bishop. An Introduction to the Kalman Filter.
Tech. rep. TR 95-041. UNC Chapel Hill, Department of Computer
Science.

[59] D. Wentzlaff et al. “On-Chip Interconnection Architecture of the
Tile Processor”. In: IEEE Micro 27.5 (Sept. 2007), pp. 15–31.

[60] D. Wentzlaff et al. “Configurable fine-grain protection for multicore
processor virtualization”. In: International Symposium on Computer
Architecture (ISCA). 2012, pp. 464–475.

[61] H. Yang et al. “Bubble-flux: Precise Online QoS Management for
Increased Utilization in Warehouse Scale Computers”. In: ISCA ’13.
2013, pp. 607–618.

[62] J. J. Yi et al. “A Statistically Rigorous Approach for Improving
Simulation Methodology”. In: HPCA ’03. 2003, pp. 281–.

[63] R. Zhang et al. “ControlWare: A Middleware Architecture for
Feedback Control of Software Performance.” In: ICDCS. 2002,
pp. 301–310.

[64] Y. Zhou and D. Wentzlaff. “The Sharing Architecture: Sub-core
Configurability for IaaS Clouds”. In: ASPLOS ’14. 2014, pp. 559–
574.

[65] Y. Zhou and D. Wentzlaff. “MITTS: Memory Inter-Arrival Time
Traffic Shaping”. In: ISCA. 2016.

