Piton: A 25-core Academic Manycore Research Processor

Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Jonathan Balkind, Alexey Lavrov, Mohammad Shahrad, Samuel Payne*, and David Wentzlaff

-3

Piton: A Manycore for the Data Center and IaaS Clouds

- Scalable architecture
- Exploit Commonality
- Enable novel Infrastructure as a Service (IaaS) economic models
- Break down boundaries between chips, boards, and racks

Piton: A Manycore for the Data Center and IaaS Clouds

Piton: A Manycore for the Data Center and IaaS Clouds

Piton: A Manycore for the Data Center and laaS Clouds

Piton Manycore Processor

- Manycore targeted at Cloud and WSCs
- SPARC V9 64-bit ISA. Boots standard OS
- Modern 64-bit NoC and tiled design for scalability
 - RTL scales to 65K cores intra-chip, 500 million cores per system
- Directory-based MESI cache coherence at distributed, shared L2 cache
 - NoCs and coherence protocol extend off-chip to support system wide shared memory
 - Coherence domains reduce directory storage and communication latency
- Multithreaded core for throughput and energy efficiency
- Energy efficient "drafting" mode
 - Reduce switching activity, I-cache accesses, and fetch bandwidth
- Memory bandwidth provisioning for laaS
 - Charge commensurately in shared Cloud based systems

Piton Chip Stats

IBM 32nm SOI process

Fabricated by IBM

• 36mm² die (6mm x 6mm)

460 million transistors

 1GHz target clock frequency @ 0.9V

Among the largest chips built in academia

- Received silicon and has been tested working in lab
- 208-pin QFP wirebonded package with epoxy encapsulation
 - ~50% double wirebonds for power and ground

Piton Architecture Overview

- 25 tiles connected in 5x5 2D mesh topology
- 64-bit NoC interconnect
 - Dimension ordered routing for deadlock free network
 - 3 physical networks for protocol level deadlock avoidance
 - 1 cycle/hop latency
 - Credit-based flow control
- Cache coherence across all tiles maintained at shared, distributed L2 cache
- Chip bridge off-chip interface
 - 2 32-bit unidirectional links
 - Multiplexes 3 physical NoCs into virtual channels for pin-limited communication
 - At 350MHz target frequency 2.8GB/s
- Chip bridge extends NoCs and coherence protocol off-chip
 - Support for up 8k chips per system or 200k cores
 - All cores can share memory!

Piton Layout and Die

Piton Tile Architecture

- Modified OpenSPARC T1 Core
 - 2-way multithreaded (50 threads per chip)
 - Drafting mode for energy efficiency
- L1.5 Cache 8KB private cache
 - Reduces bandwidth requirement to the shared distributed L2 cache
- L2 Cache 64KB slice in each tile
 - Shared, distributed cache
 - Integrated directory cache for MESI coherence protocol
- 3 NoC routers
- Floating-point unit per tile from OpenSPARC T1
 - IEEE 754 compliant, fully pipelined except multiply and divide
 - Move-type FP instructions executed by core
- Memory traffic shaper
 - Provisions memory bandwidth on a per-core basis
 - Located between L1.5 and L2 in cache hierarchy

Memory Inter-arrival Time Traffic Shaper

[Zhou, ISCA 2016]

Problem: Off-chip memory bandwidth is key limited resource and applications do not share well

Solution: Restrict core/apps memory bandwidth to fit a particular interarrival distribution

- Shapes memory traffic based on temporal distance of requests (Inter-arrival time)
- Enables provisioning of memory bandwidth based on burstiness and bandwidth
- Shapes on per-core or perapplication basis
- Distributed hardware
 - Located after L1.5
 - Shapes using hit/miss information from L2

Memory Traffic Shaper Implementation

- Bin-based hardware
 - Array of bins contain credits for requests
 - Each bin represents an inter-arrival time
 - Stall memory transaction if not enough credits
 - Credits periodically replenished
- Speculates L2 miss, Rollback on Hit
 - Assume L1.5 miss is a L2 miss
 - Add back credits on L2 hit
 - Store the bin number per L1.5 miss
- Area
 - Less than 0.9% of tile area
 - 10 bins of 10 bits each

Memory Traffic Shaper Simulation Results

OpenSPARC T1 Core

- 6 Stage in-order pipeline
- 2-way multithreading to increase throughput and hide memory latency
- L1 instruction cache 16KB, 4-way set associative, 32B line size
- L1 data cache 8KB, 4-way set associative, 16B line size
- Implements SPARV9 ISA Standard tool chain and OS compatible
- Energy efficient drafting mode

Execute

Diagram adapted from OpenSPARC T1 Microarchitecture Specification, Figure 1-2 http://www.oracle.com/technetwork/systems/opensparc/t1-01-opensparct1-micro-arch-1538959.html

Core Energy Efficient Drafting Mode

[McKeown, MICRO 2014]

- Aggregate similar or identical code to multithreaded core
- Align execution points of threads to identical instructions
 - Active synchronization
 - PC-based, random, hybrid
 - Can result in small performance overhead
- Two sources of energy savings
 - Drafting issue identical instructions consecutively
 - Reduces activity factor on control and data signals
 - Disable fetch if instruction streams are the same
- Goal: Maximize Performance/Successfully Drafted Instructions

Drafting Mode Implementation

- Addition of thread synchronization logic
- Enable bit multiplexes standard thread select with drafting thread select
- Additional logic to disable fetch and repeat an instruction for another thread

Drafting Mode Simulation Results

Different versions of Apache hosting different sites

Two averages:

Excluding same program same input (Including same program same input)

Small impact on throughput and single threaded performance

Large benefit to throughput/energy

> Even in cases performance impact is minimal

Throughput Gain

Average: 6.46% (8.57%)

Performance/Energy Gain

where there isn't,

L2 Cache

Distributed cache shared by all tiles

64KB slice per tile

1.6MB aggregate cache per chip

- 4-way set associative
- 64-byte line size
- Integrated directory cache
- Configurable cache line to L2 slice mapping:
 - Low, middle, or high-order address bit interleaving
 - Bitwise AND of low and middle-order address bits
- 4-stage dual pipelines
- SRAM macros are shared in between the two pipelines

5-cycle hit latency

Directory-based MESI Coherence Protocol

- ~35 different message types
- 3 physical NoCs with point-to-point ordering to avoid deadlock

Notable features:

- Silent eviction in exclusive (E) and shared (S) states
- No acknowledgment on L1.5 writeback

Coherence Domains

[Fu, MICRO 2015]

- VM/Application or page level coherence domains
 - Coherence only needs to be maintained within a domain
- Domains are created and modified at runtime
- Limit the maximum coherence domain size to achieve constant storage overhead (64 max sharers in Piton)
 Restrict home domain placement to reduce communication latency

24

Coherence Domains Implementation

- Additional indirection layer called Sharer Map Cache (SMC)
 - Located after coherence directory
- TLB entries extended with coherence domain IDs
 - Coherence domain IDs managed by SW
- Sharer vector and domain ID index into SMC
 - Cache is backed by full mapping table in DRAM
- SMC outputs physical core IDs of sharers
 - Used in coherence messages

Piton Test Setup

- Custom Piton Test Board
 - Modified from Double Trouble Daughterboard
 - Prof. Michael Taylor @ UCSD www.bjump.org
 - QFP 208 socket for Piton
 - Gateway FPGA to transmit Piton chip bridge interface over FMC connector to chipset FPGA board
 - Voltage regulation from 12V ATX power supply
 - Access to Piton JTAG interface and configuration signals
 - Debugging interfaces (UART)
- Chipset in Host FPGA board
 - Most any FPGA board with a FMC connector
 - Genesys2, ML605, VC707
 - Includes:
 - Chip bridge demux
 - North and south bridges
 - DRAM and I/O controllers

Piton Test Setup

Piton Test Setup Gateway FPGA Bulk Decou

DRAM + I/O Gateway FPG

Bulk Decoupling

Misc. Configuration

Chipset FPGA
Kintex 7

Piton + Heat Sink

Power Supply

Piton Demo

Extended Demo: http://parallel.princeton.edu/piton/helloworld_demo.html

OpenPiton

- Open source release
 - RTL
 - Simulation infrastructure
 - Test/validation suite
 - FPGA synthesis
 - ASIC synthesis and backend
- Highly configurable
 - Scales to ½ billion cores
 - Configurable cache sizes
 - Configurable NoC topology

- Targets multiple FPGAs at different price points
- Great for:
 - Research in many domains
 - ASIC Tapeouts
 - Education
- BSD uncore and GPL core

http://www.openpiton.org

Piton: A 25-core Academic Manycore

Research Processor

Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou, Jonathan Balkind, Alexey Lavrov, Mohammad Shahrad, Samuel Payne, and David Wentzlaff

PRINCETON
School of Engineering and Applied Science

SUPPLEMENTAL SLIDES

Support

This work was partially supported by the NSF under Grants No. CCF-1217553, CCF-1453112, and CCF-1438980, AFOSR under Grant No. FA9550-14-1-0148, and DARPA under Grants No. N66001-14-1-4040 and HR0011-13-2-0005. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of our sponsors.

Team and Timeline

Team

- Started with 5 PhD students
- Now 11 PhD students
- ~3 undergraduates per year

Timeline

- Design, RTL, andVerification 8 months
- Physical design 6 months
- Test setup and Bring-up –6 months, ongoing

L1.5 Cache

- 8KB, 4-way set associative, 16B line size
 - Same size as core's L1 data cache
 - Does not cache instructions
- 3-stage pipeline
 - Request decode, tag check, data access
 - 4 cycle hit latency
- Transducer and write-back layer

write-through CCX Transduces core's CCX interface to Piton NoC protocol Encapsulates write-through L1 data cache with write-back capability Core Reduces bandwidth usage to distributed L2 cache **TAG DECODE** DATA Decoder Tag From core To core Check Store **MSHR** Request Data Miss Write Picker Access Buffer Way-map To L2 NoC1/3 From L2 Table RW **MSHR SRAM Macros** Hot Chips 28 August 23, 2016

L2 Cache

Directory Cache

NoC Routers 3

write-back Piton NoC

L1.5 Cache

35

Directory-based MESI Coherence Protocol

 Four-hop message communication (no direct communication between private L1.5 caches)

Silent eviction in E and S states

 No need for acknowledgement upon write-back of dirty lines from L1.5 to L2

Coherence Domains Simulation Results

- Multi-program workload PARSEC benchmarks with 16 threads
- 1024-core chip simulation compared to baseline with 1024-bit sharer vectors and no coherence domains (same thread count and thread to core mapping)

- Constant storage overhead with 0.3% performance loss on average
- Performance overhead due to sharer map <u>cache</u>

Glossary of Terms

- Ack Acknowledgment
- AckDt Acknowledgment with Data
- ASIC Application Specific Integrated Circuit
- CCX CPU-Cache Crossbar
- DG Ack Downgrade Acknowledgment
- Dir Directory
- FMC FPGA Mezzanine Card
- FP Floating Point
- FPGA Field Programmable Gate Array
- FwdRd Forward Read Request
- FwdRdAck Forward Read Acknowledgment
- GA Genetic Algorithm
- laaS Infrastructure as a Service
- Ifill Instruction Fill
- Inv Invalidate
- Inv Ack Invalidate Acknowledgment
- ISA Instruction Set Architecture
- LLC Last level cache
- Mem Req Memory Request

- Mem Reply Memory Reply
- MESI Modified, Exclusive, Shared, Invalid
- MITTS Memory Inter-arrival time traffic shaper
- NoC Network on Chip
- OS Operating system
- PC Program Counter
- QFP Quad Flat Pack
- Req Requestor
- ReqRd Read Request
- SMC Sharer Map Cache
- SOI Silicon on Insulator
- TLB Translation Lookaside Buffer
- Wb Writeback
- WbGuard Writeback Guard
- WSC Warehouse Scale Computer