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Abstract
Failure is inevitable in cloud environments. Finding the root
cause of a failure can be very complex or at times nearly im-
possible. Different cloud customers have varying availability
demands as well as a diverse willingness to pay for avail-
ability. In contrast to existing solutions that try to provide
higher and higher availability in the cloud, we propose the
Availability Knob (AK). AK provides flexible, user-defined,
availability in IaaS clouds, allowing the IaaS cloud customer
to express their desire for availability to the cloud provider.
Complementary to existing high-reliability solutions and not
requiring hardware changes, AK enables more efficient mar-
kets. This leads to reduced provider costs, increased provider
profit, and improved user satisfaction when compared to an
IaaS cloud with no ability to convey availability needs. We
leverage game theory to derive incentive compatible pricing,
which not only enables AK to function with no knowledge
of the root cause of failure but also function under adver-
sarial situations where users deliberately cause downtime.
We develop a high-level stochastic simulator to test AK in
large-scale IaaS clouds over long time periods. We also pro-
totype AK in OpenStack to explore availability-API trade-
offs and to provide a grounded, real-world, implementation.
Our results show that deploying AK leads to more than 10%
cost reduction for providers and improves user satisfaction.
It also enables providers to set variable profit margins based
on the risk of not meeting availability guarantees and the dis-
parity in availability supply/demand. Variable profit margins
enable cloud providers to improve their profit by as much as
20%.

Keywords flexible availability, cloud availability, failure-
aware scheduling, cloud economics, SLA
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1. Introduction
Understanding and overcoming failures in computing sys-
tems has always been an arduous challenge. The emergence
of billion-transistor designs along with smaller and less reli-
able transistors have led to an increasing rate of hardware
failures. Nevertheless, with all of its complexities, hard-
ware is only one source of failure. The entire computing
stack, including hardware and software, has faced tremen-
dous growth in both scale and complexity, increasing the
probability that failure occurs in such large systems. More-
over, failure analysis in large-scale computing systems has
become extremely complicated due to the deployment of
hundreds of thousands of machines with complex interac-
tions.

Many researchers have studied failure along with its
sources and consequences in large-scale computing infras-
tructures [41, 57, 59] as well as cloud environments [19,
22, 65]. Failure in the cloud can have major negative con-
sequences such as propagated service disruptions [66], con-
siderable energy waste [31], and more importantly negative
effects on provider’s reputation [33]. Cloud providers have
used many effective techniques to increase the reliability of
their infrastructures, but to date, failures are still frequent.

One of the main concerns of cloud customers is availabil-
ity. According to Pan et al. [50], 73% of customer/provider
service level agreement (SLA) negotiations included avail-
ability concerns. Availability is considered to be both the
number one obstacle to the growth of cloud computing [16]
and the most important opportunity for cloud providers [53].
At the same time, surveys [35] illustrate that different cus-
tomers have different downtime demands, depending on
their application. For instance, a low-end, non-critical web
hosting service neither has the same availability demand nor
the ability to pay for availability that a mission-critical bank-
ing service has.



Infrastructure as a service (IaaS) cloud providers gener-
ally use a diverse set of hardware components in their data
centers. Different generations of one Intel processor fam-
ily have different reliability, availability, and serviceability
(RAS) features [11]. Undoubtedly, providers like Amazon
Web Services that use different families and generations of
Intel processors [3] have considerable reliability heterogene-
ity. Moreover, running different operating systems on the
same processor can lead to various downtimes [11]. Like-
wise, different IaaS components, such as memory DIMMs,
disks, network switches, power supplies, etc., can also result
in varied reliability.

The inevitability of failures, different market demands for
availability based on application and IaaS customer needs,
and the heterogeneous nature of component reliability, all
require a shift from the conventional approach of maximiz-
ing availability. Like many researchers have alluded to, there
is inefficiency in using fixed availability service level objec-
tives (SLOs) [60, 63], and we believe that both providers and
customers can benefit from flexible availability.

In this paper, we propose the Availability Knob (AK) for
IaaS clouds. AK enables cloud providers to serve customers
with various availability demands. On the customer side, AK
allows customers to express their true availability needs and
be charged accordingly. Providers benefit from the economic
advantages of such flexibility and customers need only to
pay for the minimum availability they require. We explore
the implications of flexible availability on SLAs and derive
economic incentives to prevent customers from gaming the
system or providers from deliberately violating SLOs. We
then explore and discuss how AK can make more profit for
cloud providers. In order to evaluate AK and study different
design trade-offs, we developed a stochastic cloud simulator,
which enables simulating large-scale infrastructure for ex-
tended periods of time; something necessary for our failure-
related system. We also implement an AK prototype using
the OpenStack platform. In our evaluation, we show that AK
has the potential to reduce the cost for the cloud provider, in-
crease provider profit, and improve user satisfaction (meet-
ing user availability needs).

2. The Availability Knob
In contrast to typical IaaS clouds that only offer a fixed avail-
ability guarantee to customers, the Availability Knob (AK)
allows IaaS cloud customers to request their desired avail-
ability objectives and be charged accordingly. AK permits
a provider to employ the failure history of its infrastructure
to wisely serve different availability demands. It also allows
providers to exploit the usual heterogeneity of components
in a profitable manner. Figure 1 conceptually depicts how
AK enables customers to address their availability demands
and schedules them based on machine reliability.

In this section, we discuss the two IaaS elements that
should be changed to accomplish AK: service level agree-
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Figure 1. Top (a) shows how availability needs are not
conveyed to the cloud scheduler. Bottom (b) shows how
AK enables communicating availability information and can
schedule based on machine reliability. Different colors rep-
resent different availability/reliability.

ments (SLAs) and the scheduler. We also mention the ex-
isting availability monitoring tools/techniques which can be
utilized in Section 2.3.

2.1 SLA for Flexible Availability
Availability is a crucial metric for quality of service and
is included in almost all cloud SLAs. While availability
is generally defined as the uptime of a service in a spe-
cific time period, many assumptions can affect the way it
is calculated. For instance, different cloud providers use dif-
ferent service guarantee granularities, guarantee exclusions,
time granularities, and measurement periods to measure the
availability [18]. According to a comparison [67] of pub-
lic cloud SLAs, a monthly measurement period is the most
common period, service granularities range from a single in-
stance (VM) to all of a customer’s VMs in multiple avail-
ability zones (Amazon EC2), and time granularities differ
from a minute to an hour. The way providers track avail-
ability can also be different. For instance, a service provider
was reported to track only the internal system availability
rather than user accessibility [46]. Moreover, each provider
excludes certain events from availability measurement. For
example, under seven conditions, Amazon EC2 excludes
any downtime from service commitment calculations [2],



Parameter Description
a Delivered availability
A Service commitment (Requested availability)
α Period portion where A is required.
C Cost
Ci Initial cost (not including penalty)
D Demand
DT Downtime
DT F Downtime fulfillment
γ Exponent in WTP
i Period index
j User index
λ Base in WTP
m Profit margin (%)
M Absolute profit margin
P Price
R Risk
S Service
sc Service credit (%)
SC Absolute service credit
t Time
T Availability period starting time
U Set of all users
ω Coefficient in WTP
WT P Willingness to pay

Table 1. List of parameters used in the paper.

or Google Compute Engine’s (GCE) SLA does not apply to
many problems including “errors caused by factors outside
Google’s reasonable control” [5].

Apart from the differences in availability definitions and
measurements, service credit (penalty) is also often calcu-
lated in different manners. While providers like Amazon
EC2, Google GCE, and Microsoft Azure use non-linear
service credit functions, some providers use linear penalty
schemes [67]. Commonly, the onus is on the customer to
report outages and provide the cloud provider with all the
necessary information to validate the claim, often within a
limited time period (e.g. two month period for Microsoft
Azure [6]).

Lack of clarity is an undeniable consequence of such
differences in commitment/penalty calculations for cloud
customers. Enabling end-users to select their desired uptime
and measurement period results in a more sensible notion of
availability that allows them to run VM instances tailored to
their applications’ availability requirements.

Despite existing SLAs that are designed to serve fixed
availability commitments, the Availability Knob offers SLAs
with configurable availability commitments and measure-
ment periods. Therefore, the service credit function (penalty
function) would not be identical for different availability de-
mands. Although the service credit function is determined
by each provider based on its own strategies and redefining
it is not in the scope of our study, we discuss how a given ser-
vice credit function can be adjusted to fairly serve different
customers with different availability requirements.

Let’s assume that a provider is offering a service credit
function of scA(a) to its clients, where a is the delivered
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Figure 2. Comparison of four service credit functions.

availability (uptime percentage) and A is the service com-
mitment value (Table 1 describes all the parameters used in
the paper). Usually, a service credit is paid if the commit-
ment is not met:

A = min(a) s.t. scA(a) = 0. (1)

The service credit function for three public providers as well
as an arbitrary service credit function are shown in Figure 2,
where service commitment (A) is 99.95%.

One way to adjust an sc function for different clients is
to keep them relatively satisfied. For instance, Alice and
Bob asking for 5 and 10 minutes of monthly downtime,
respectively, should be given back the same service credit
when experiencing 6 and 12 minutes of downtime. To do
this, we define the downtime fulfillment (DTF) as

DT F =
DTSLO−DTDelivered

DTSLO
=

(a−A)
(1−A)

, (2)

where DTSLO is downtime objective and DTDelivered is the
customer’s experienced downtime during a specific period.
In order for customers with different availability demands to
have the same level of downtime fulfillment the following
should be satisfied:

DT FA1 = DT FA2 ⇒
(a1−A1)

1−A1
=

(a2−A2)

1−A2
(3)

As a result, the service credit function, scA2(a) can be calcu-
lated from scA1(a) as

scA2(a) = scA1(ka+(1− k)), k =
(1−A1)

(1−A2)
(4)

Figure 3(a) shows the scaling of the arbitrary sc function
shown in Figure 2 for some different availability commit-
ment values. Note that other adjustments might be adopted
depending on provider’s strategies. For instance, the result
of scaling with k′ =

√
k is shown in Figure 3(b).
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Figure 3. Scaling of a reference service credit function for
different availability commitment values.

2.2 Scheduler
AK’s VM scheduler aims to maximize the expected provider
profit margin while meeting the most SLOs. This means that
it not only tries to assign VMs to the cheapest available re-
sources, but it also considers the risk of failure and its result-
ing service credit (penalty) when doing VM assignment. The
Availability Knob scheduler tracks previous machine fail-
ures and determines the probability of failure for each spe-
cific physical machine (PM) by comparing the time which
has passed since its last failure and compares it to the ex-
pected mean time between failures (MTBF) for that type of
PM. For each VM placement, the scheduler calculates the
failure probability as well as expected downtime due to fail-
ure and considers a user’s delivered/requested availability to
calculate the expected overhead cost.

2.2.1 Benign VM Migration (BVM)
The AK scheduler can periodically migrate over-served
VMs to cheaper machines, if available. This ability, called
Benign VM Migration (BVM) throughout the paper, is a
unique consequence of having flexible availability. Providers
can deliberately migrate users’ VMs in order to lower their
operational expenses (OpEx). BVM candidates are selected
based on how well they are being served in the current
measurement period, using the downtime fulfillment met-
ric (DTF) defined in Equation (2).

2.2.2 Deliberate Downtime (DDT)
Suppose that a customer’s delivered availability is going to
be higher than the requested availability demand, a provider
can deliberately make them experience downtime. Seem-
ingly brutal, such Deliberate Downtimes (DDT) can be used
by providers for different strategic purposes such as creating
market incentives (for instance to encourage customers to
purchase their true needs), better serving needy customers,
or lowering energy consumption. The reclaimed resources
due to DDT deployment can be used for extra bidding or
computational sprinting [70] purposes.

Each user has a maximum affordable downtime, which
can be written as

DTMax(t) = max(DTSLO−DT (i),0), t ∈ [Ti,Ti+1). (5)

Here t is the time, Ti is the starting time of user’s i’th period,
and DT (i) denotes the experienced downtime in the i’th
period. Now, if the remaining time in the period is less than
the affordable downtime (Ti+1 − t < DTMax(t)), the cloud
provider can attempt to pause or suspend some or all of the
user’s VMs.

Each deliberate downtime event contains uncertain VM
deactivation and reactivation intervals. In specific, a long re-
activation interval can possibly extend the downtime into the
next measurement period. This can cause an SLO violation
if a user’s demand squeezes in the next period. Our experi-
ments show that setting a small safety margin (5% of DTMax)
on DDT length can significantly alleviate such violations. In
Section 6 we demonstrate the results of applying DDT.

2.3 Availability Monitoring
In order for AK to operate, failure occurrences need to be
collected. Due to its wide applicability, performance and
availability monitoring has been studied by researchers for a
long time [14, 32]. Moreover, there are many industrial solu-
tions, such as Nagios [7], Ganglia [4], and Zabbix [9], avail-
able for monitoring cloud availability. Systems like Flex-
ACMS [27] even enable automatic deployment of multiple
cloud monitoring tools. Therefore, the existing availability
monitoring solutions are adequate for the AK to use.

2.4 Deployment of AK
Unlike IaaS ideas introducing novel architectures [17], no
hardware change is required to deploy the AK. This reduces
technology adoption costs for cloud providers. On the other
hand, AK can be used in IaaS clouds as an optional feature.
Conventional fixed availability is a subset of AK, and this
allows customers to continue using conventional fixed avail-
ability services.

3. Economics of the Availability Knob
The foundation of the AK can be summarized in a single sen-
tence: the higher the delivered availability, the more it costs
the cloud provider. Availability not only directly relates to
the resource usage percentage, but also providing high avail-
ability (HA) requires excess system costs. Any HA solution,
such as replication, checkpointing, or machine resilience, in-
troduces CapEx1/OpEx overheads.

Allowing adaptation to various availability commitments,
the Availability Knob offers product flexibility. This leads
to supply chain flexibility, a strategically important capa-
bility [61]. In this section, we explore the price incentives
needed to prevent customers from gaming the system and to

1 Capital Expenditure



Defective Client Healthy Client

Request higher availability and cause DT Request the desired availability

Responsive Provider (MA2 −SCA1 (A2),PA1 −SCA1 (A2)) (MA2 ,PA2 )

Lazy Provider introducing excess DT (MA3 −SCA1 (A3),PA1 −SCA1 (A3)) (MA3 −SCA2 (A3),PA2 −SCA2 (A3))

Table 2. Payoff matrix showing provider margin and customer price for different causes of downtime.

prevent cloud providers from being deliberately negligent.
Moreover, we address how AK can lead to higher profits for
cloud providers.

3.1 Pricing for Incentive Compatibility
As many studies [29, 49, 57] have shown, software is one
of the root causes of failure in computer systems. By virtue
of VM isolation in the cloud, failures in a single VM do
not affect other co-tenants (unless the hypervisor suffers a
failure) [45]. However, such possible software failures can
affect the availability of the VM itself. Often, it is difficult
to distinguish software-induced failures from failures caused
by hardware (e.g. soft error incident), etc.

We believe, similar to other researchers [39], that down-
time measurements should be inclusive of all classes of fail-
ure, including software failure. We further argue that instead
of adopting measures to investigate the cause of a down-
time incident, which can impose performance overheads and
might not be accurate, IaaS providers can use price as a more
effective tool. We use game theory to show how prices can
be set in such a way that clients who are running defective
software or are deliberately causing software failures pay
commensurately higher prices. Likewise, providers are in-
centivized to meet their service objectives.

3.1.1 Healthy Client, Responsive Provider
As shown in Table 2, a payoff matrix can be formed to find
the Nash Equilibrium for different provider/client behavior
scenarios. On the vertical axis, a provider can either provide
the availability requirements or introduce some extra down-
time due to lazy management. Across the horizontal axis, a
client can either run defective software which reduces the
availability from A1 to A2, resulting in some service credit
return, or instead run healthy, reliable, software and origi-
nally ask for the lower A2. In this game theoretical repre-
sentation, maximizing the absolute profit margin (M) is the
primary objective of a provider, while the client tries to min-
imize the price (P). Here, SC represents the absolute service
credit (SCA(a) = scA(a)×PA). Now, meeting the following
constraints of:

∀A1,A2,A3 s.t. A3 ≤ A2 ≤ A1 :

1. MA3 −MA2 ≤ SCA1(A3)−SCA1(A2) (6a)

2. SCA1(A3)−SCA2(A3)≤ PA1 −PA2 (6b)

ensures that there exists an equilibrium (highlighted in gray
in Table 2), where the provider maximizes its profit mar-

a = A1 a=A2 < A1

T

T (1-   )T
time

Figure 4. The aggregate availability requirement of a client
in a measurement period (T ).

gin by doing its best to meet the SLA and the client pays
minimally by asking for its true availability demands. Con-
straint (6a) assures that when providing less availability, a
provider’s margin increase is less than the increased penalty.
Therefore, it guarantees a provider’s adherence to the avail-
ability SLO to maximize its margin. At the same time, (6b)
ensures that a customer lowering the availability to gain ser-
vice credits would still be more expensive than initially ask-
ing for the desired availability.

Cloud providers can enforce (6a) and (6b) by setting their
pricing schemes properly. Clients, on the other hand, should
be able to verify these constraints. Even though P and sc (and
as a result, SC) functions are known to both parties through
the SLA, the M function is conventionally not revealed to
clients. While the cloud client may not exactly know M, it
can typically approximate this function. If the client believes
that (6a) is not maintained, it can choose not to use the
cloud provider. Also making this easier for the client is
that MA3 −MA2 is typically negative because margins are
typically higher for harder-to-provide availability values.

3.1.2 Incentive Compatibility for Variable Demands
Consider a client who does not always require the initial
availability, A1. But rather, sometimes can afford a lower
availability, A2. Figure 4 shows the aggregate availability
requirement of such a client in a measurement period (T ),
where α is the portion that high availability A1 is required.
This client has three choices:

1. Ask for A1 during the whole period and pay the cost
overhead. This strategy leads to the total price of PA1 .

2. When the high availability is not required, deliberately
crash its VM(s) to lower the availability to A2 and earn
service credits. As a result, the total price paid in a period
would be

PA1 −SCA1(αA1 +(1−α)A2). (7)
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Figure 5. Upper bound of SC (gray area) and max(SCA1(a))
(double-arrow) for (a) a concave, (b) a convex, and (c) an
arbitrary price function.

3. Change its availability need to A2 and back to A1, when-
ever needed. This way the client pays

αPA1 +(1−α)PA2 . (8)

While option 1 is the most expensive, in order to motivate
the client to choose option 3 over 2,

αPA1 +(1−α)PA2 < PA1 −SCA1(αA1 +(1−α)A2) (9)

should be satisfied. This relation can be rewritten as

∀α ∈ [0,1], ∀A2 s.t. A2 < A1

SCA1(αA1 +(1−α)A2)< (1−α)(PA1 −PA2).
(10)

Equation (10) correlates the service credit function (SC) with
the price function (P) to maintain a client’s economic in-
centive. Given a price function, this equation sets the upper
limit on SC. The geometrical interpretation of (10) is that
SCA1(a) should be bound between the PA1 line and all secant
lines drawn between the fixed (A1,PA1) point and any vari-
able point on the price function. Figure 5 shows this bound
(gray area) for a concave, convex, and arbitrary-shaped price
function. For a concave function (Figure 5(a)) that all such
secant lines lie under the price function, the SC function is
simply bound between PA1 and the price function. By choos-
ing the SC in this bound, a provider implements economic
incentives for its clients to request their true demands.

3.2 How does AK make money?
AK helps cloud providers achieve higher profit margins in
two major ways. First and foremost is by adapting deliv-
ered services to customers’ real demands. As discussed in
[71, 72], such an ability leads to higher market efficiency,
where both the cloud provider and cloud customers gain
benefit. In Section 6 we show how AK improves user sat-
isfaction, which is essential for maintaining long-term rev-
enue [23]. Second, is by efficient resource utilization. AK
enables techniques such as BVM and DDT that lower the
OpEx and conserve resources. Providers can make addi-
tional revenues by bidding reclaimed resources (similar to
AWS spot instances) or by offering better computational
sprinting.

0.99901 0.9995 0.99999
Availability

10 -3

10 -2

10 -1

10 0

10 1

Ci
R

Figure 6. Arbitrary initial provider cost (Ci) and risk (R)
functions.

To demonstrate the importance of flexible availability, we
show the potential of setting variable profit margins based
on different availability demands. This enables providers to
be compensated for the risk of providing high availability
and adjust the price to market demand. Let’s assume that
20,000 users are being served in a cloud environment. These
AK users have uniform, normal, or bimodal availability de-
mands in the [99.901%,99.999%] range2. Consider Ci(a)
denoting the initial provider cost function (cost not consid-
ering possible penalties), and R(a) expressing the risk func-
tion, which determines the risk of not meeting the availabil-
ity SLO. The expected absolute profit margin (M) can be
calculated as

E[M] = ∑
j∈U

[(1−RA j)(mA jCiA j)+RA j(mA jCiA j(1− p))]

= ∑
j∈U

mA jCiA j(1− pRA j),

(11)
where U is the set of all users, mA j is a provider’s profit mar-
gin for the availability requested by user j (e.g. 20%), and
p is the penalty (e.g. 10% assuming fixed sc). Considering
Ci(a) and R(a) to be as shown in Figure 6, we are interested
to know if the provider can increase its overall profit by tun-
ing the profit margin for different availability values. For the
sake of fair comparison, we keep the average of the tuned
margins to be the same as the flat margin of 20%. Figure
7 depicts the availability demand distribution, new modified
margins, and the overall gain over having a fixed flat margin
of 20% for all availability needs. The overall gain is a func-
tion of risk as well as the service credit function, sc, which
for simplicity is assumed to be a fixed value (p) for all users.
As seen, for this particular cost function and depending on
the demand distribution, risk of service, and service credit,
the provider can gain between 1% to 20% higher overall

2 Throughout this paper, for availability range [A1,A2], normal distribution
parameters are µ = A1+A2

2 and σ = µ

4 . Bimodal distribution is created by
first forming a normal distribution (µ = A1,σ = µ

4 ) and then shifting the
left half to A2. Availability demands greater than 1 (A > 1) are neglected.



Figure 7. Gaining more overall profits by tuning profit mar-
gins based on user demand and risk of service.

profit by tuning the margins for individual users. Such tun-
ing, which is based on risk of service and supply/demand,
brings availability-specific pricing flexibility to providers.

4. Prototype Implementation
Similar to other researchers that have used OpenStack for
their cloud availability studies [34, 37, 40], we implemented
AK’s prototype by integrating it into OpenStack [8]. We
modified OpenStack’s dashboard (Horizon) and compute
(Nova) components to add the notion of availability to as-
sociated APIs and databases (DBs) as well as the scheduler.
As Table 3 shows, the integration of AK requires only minor
modification to OpenStack Nova database. APIs between
the Horizon and Nova components as well as internal Nova
APIs that connect to the Nova DB have also been modified.

Figure 8 shows the modified dashboard, where the ad-
min can manage availability options. Each availability op-
tion, has an availability value (avail val), calculation period
(period), and price factor (price factor). For instance, an
option can have 99.99% availability, calculated over a 30-
day period, and a price factor of 1.12 (12% extra price com-
pared to the default 99.95%). Each virtual machine instance
has an availability option tied to it, which is selected at the
launch time and can be modified later.

The OpenStack scheduler is composed of different filters
that perform filtering and weighting of available hosts (phys-
ical nodes) to schedule a VM instance [44]. We added a new
weigher as well as a filter to weight and select suitable hosts
depending on an instance’s availability demand. This is done
by comparing the time which has passed since the last fail-
ure of a node to its MTBF. We modified OpenStack’s Lib-
virt driver to track availability of compute nodes and update
failure records when any status changes occur. In future, we

Table New Table Added Field

compute nodes 7

last failure
lastlast failure
mtbf
mttr

instances 7

availability op id
avail val
period
price factor

availability ops 3

avail val
period
price factor
+ 9 general fields

availability op projects 3
availability op id
+ 6 general fields

Table 3. Summary of OpenStack Nova DB modifications.

plan to expand the scope of AK to OpenStack’s block storage
(Cinder) and image service (Glance) components, as well.

In our evaluation section, we focus on using a stochas-
tic simulator over using our OpenStack prototype because it
enables us to vary machine types which would be imprac-
tical to do with a small cluster. Also, faults are infrequent
enough that it would be difficult to get a statistically signif-
icant number of errors in our cluster over a short period of
time. Therefore we use AKSim to evaluate large data centers
with many different types of machines over long, simulated,
periods of time.

5. AKSim: The Stochastic Cloud Simulator
Due to the nature of failures being very uncommon in mod-
ern computing systems, large-scale/long-term analysis of
AK is necessary; especially considering the fact that accel-
erated testing is extremely inaccurate for complex systems
(e.g. a data center). Therefore, although we built the AK pro-
totype by integrating our idea into OpenStack, we believe
that the best way to evaluate AK is through simulation of
large infrastructures over long periods of time. To do so, we
developed a high-level stochastic cloud simulator (AKSim)
in MATLAB.

We should elaborate that using available workload traces,
such as Google’s cluster workload traces [54], does not suit
our study, since such traces have no machine reliability in-
formation. This prevents us from investigating the impact of
component heterogeneity. Also, we study environments with
diverse availability needs and using the available traces that
are for fixed availability environments is futile.

The simulation environment hosts VMs from thousands
of users. Each user is randomly selected from nine differ-
ent application categories, such as web hosting, analytics,
email service, etc. Each usage scenario can require different
resources, and might run multiple VMs. The VM lifetime
and reactivation probabilities are random variables with nor-
mal distributions that depend on the user application cate-
gory. The availability needs of AK users can follow arbi-
trary distributions between different availability ranges and



Figure 8. A screenshot showing the added Availability panel in the AK OpenStack dashboard.

Algorithm 1 Main tasks performed in each AKSim simula-
tion step.

1: Create/end users
2: loop over all users:
3: Update costs
4: loop over all machines:
5: Reactivate down machines (based on MTTR)
6: Fail running machines (based on MTBF)
7: loop over all VMs:
8: Update users’ uptime/downtime
9: if VM is active then

10: Expire instance (based on instance lifetime)
11: Migrate instance (based on host status)
12: Perform BVM (if applicable)
13: Perform DDT pause/unpause (if applicable)
14: else
15: Reactivate instance (if applicable)

we mention it for each test. The computing environment is
composed of limited physical machine (PM) types, having
different resources and costs as well as different aggregated
annualized failure rates (AFRs). Aggregated AFRs incorpo-
rate any root cause of failure affecting end user service, such
as hardware, software, network, etc. Algorithm 1 shows the
main tasks performed in each simulation step of AKSim.

It is worth mentioning that feeding the simulator with pre-
cise AFR values is not trivial. The main reason is that such

reliability data for real data centers is usually not publicly
available. Furthermore, not only does every computing en-
vironment have its unique failure rate, but also the differ-
ences in the calculation of such availability metrics com-
plicates the use of reported failure data. For instance, Mi-
crosoft reports that 9% of machines have been replaced in a
14 month period [65], which translates into AFR = 8% and
MT BF > 12yrs. Such a low failure rate is a result of au-
thors only considering machine replacements in AFR calcu-
lations. However, Sathiamoorthy et al. [55] mention an av-
erage of about 25 failed nodes, daily, in a 3000 node pro-
duction cluster, which is noticeably higher than the previ-
ous record. Google’s cluster workload traces [54] reveal that
40.9% of nodes have been removed at least once in a 29-day
period [24]. For our simulations, we assume the MTBF to be
between 12 to 60 months (AFR ∈ [18%,63%]).

Many studies [41, 57, 58] have shown that the time be-
tween failure in large computing systems is well modeled
by the Weibull distribution. Nevertheless, creating a Weibull
distribution using only AFR (or MTBF) is not possible, as
the distribution is characterized by two parameters. Also, as
discussed by Krasich et al., the mean of the Weibull distri-
bution “is in no way related to the mean times to the failure
occurrences [42].” Therefore, our simulator uses the MTBF
values corresponding to various machine types to first gen-
erate intermediary exponential distributions. Subsequently,
Weibull distributions are formed by deliberate imprecise fit-
ting to those exponential distributions. Performed using in-



adequate data points, such imprecise fitting introduces some
noise and makes the distributions different. In general, hav-
ing access to more information than mere failure rates would
allow one to form the Weibull distributions directly. The gen-
erated Weibull distributions are used to determine the MTBF
of each single PM. After each machine failure, the simulator
uses a machine’s failure distribution to assigns a new MTBF
to it.

We use the Amazon EC2 on-demand instance prices
(available through AWS Price List API), instance machine
types [3], and AWS pricing principles [12] to reverse engi-
neer the cost for compute, memory, storage, and network. To
calculate the cost from the price, we adopt the simplifying
assumption of AWS having a fixed 20% profit margin3. Ma-
chines simulated by AKSim can have different component
types with different costs. For instance, simulated machines
can use provisioned IOPS, general purpose, and magnetic
volume types, similar to Amazon EBS [1], and we charge
their tenants respectively.

6. System Evaluation
As mentioned in the previous section, in order to evalu-
ate our system we take advantage of stochastic simulations,
which enables evaluating AK in large infrastructures over
extended periods of time. In Section 6.1 we demonstrate the
performance of AK’s availability-aware scheduler. Then in
Section 6.2, we show how AK improves users’ satisfaction
by delivering their desired demands and charging them re-
spectively. The effectiveness of BVM in decreasing costs is
discussed in Section 6.3. Finally in Section 6.4, we show
how catastrophic events hurt AK customers differently than
in a fixed availability regime. Our results show that by utiliz-
ing a flexible availability API, an availability-aware sched-
uler, BVM, and DDT, AK reduces the provider costs up to
10.9% compared to a conventional IaaS environment.

6.1 Availability-aware VM Scheduling
As discussed in Section 2, AK performs availability-aware
VM scheduling through anticipating the risk of each PM
considering its failure history. Moreover, it performs Benign
VM Migrations (BVMs), where over-served VMs are pe-
riodically migrated to cheaper resources, when available.
Figure 9 compares the requested and delivered monthly
availability values, in a data center (DC) with 1,000 ma-
chines and 12,000 users, over the course of 6 months.
BVM is performed every hour for the top 10% over-served
users. Here, user demand has a normal distribution in the
[99.901%,99.999%] range. As shown, the scheduler fails to
meet the availability SLO in less than 0.02% of cases. The
color of data points changing from magenta to blue shows
lower DTF values and the bisector (dashed line) represents

3 According to Forbes [15], AWS had a margin of 16.9% in the first quarter
of 2015 and this number was predicted to grow.
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Figure 9. Delivered vs. requested availability in a DC with
12,000 users, where more than 99.98% of SLOs are met.
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Figure 10. Delivered vs. requested availability in a data
center with 12,000 users after applying DDT.

DT F = 0. Points below the dashed line represent missed
SLOs.

We introduced Deliberate Downtime (DDT) as a tool to
shape delivered availabilities, mainly to build market incen-
tives (2.2.2). Having similar simulation parameters as the
previous experiment, Figure 10 shows how enabling DDT
affects the delivered service. Comparing it with Figure 9,
one can see how the average delivered availability is lowered
without missing SLOs. Each diagonal distribution in the plot
corresponds to users with the same fraction of their VMs be-
ing paused at the end of a period, and in particular, dots on
the bisector correspond to the case where all VMs of a user
experienced DDT.

The scheduler’s performance profoundly depends on
availability demand distribution. Table 4 depicts the sched-
uler performance with and without applying DDT for three
different demand ranges and various distribution shapes. It
can be seen that the SLO miss rate increases for higher/tighter



Range

D
is

t. No DDT DDT
∆C(%)Miss(%) DT F Miss(%) DT F

[Two 9’s,
Four 9’s]

N 0 0.999 0 0.300 0.116
U 0.004 0.997 0.001 0.299 0.263
B 0.004 0.997 0.007 0.300 0.125

[Three 9’s,
Five 9’s]

N 0.015 0.987 0.013 0.301 -0.021
U 0.342 0.972 0.424 0.303 0.102
B 0.458 0.966 0.529 0.305 0.294

[Four 9’s,
Six 9’s]

N 2.572 0.878 2.783 0.344 0.220
U 4.222 0.835 4.456 0.343 0.074
B 5.178 0.806 5.382 0.332 0.136

Table 4. The AK scheduler performance w. and w.o. DDT
(N: Normal, U: Uniform, B: Bimodal).

availability demand distributions. Furthermore, since most
of the misses are for very high availability demands, the
higher the concentration of demands at the high reliabil-
ity tail, the higher the miss rate (MissN < MissU < MissB).
Table 4 also reflects how performing DDT decreases the
average downtime fulfillment (DTF) noticeably, with just a
small miss rate increase. It is also worth noting that pausing
VMs by DDT results in a minor cost saving, as well (last
column, ∆C).

6.2 Increased User Satisfaction
One of the benefits of AK is allowing customers to express
their different availability demands and be served accord-
ingly. This, intuitively, would lead to more customer sat-
isfaction. In order to investigate it formally, we define a
measure for service satisfaction to address two main service
elements: demand satisfaction (Dsat ) and price satisfaction
(Psat ). While the former captures how good of an availability
was delivered to a customer, the latter compares the actual
service price to a customer’s desired price. In fact, these two
capture perceived quality (PQ) and perceived value (PV) of
the service, which is necessary for customer satisfaction in-
dices (CSIs) [62]. More factors, such as ease of deployment,
also contribute to user satisfaction, but their precise evalua-
tion necessitates a market study with real customers and is
out of the scope of this paper. We use DT F to represent de-
mand satisfaction and assume that the average willingness to
pay (WTP) can be represented by

WT P = ωλ
γ(A−Ac) (12)

function families, where Ac is the fixed availability value
without AK and ω , λ , and γ are shaping parameters. In
general, the WTP function can have any arbitrary shape
and can only be precisely determined by market analysis
after deploying AK. But in Equation (12), we model it by
a large family of exponential functions. We assume that
users are not willing to pay more for less availability and
thus WT P is non-decreasing (λ > 0,γ > 0). Therefore, the
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Figure 11. User satisfaction using AK commitment value
is always greater than having fixed availability option. λ and
γ are shaping parameters of the users’ willingness to pay
function.

service satisfaction can be written as

Ssat = Dsat ×Psat = DT F× WT P
Pcharged

= DT F× ωλ γ(A−Ac)

Pcharged
.

(13)
Figure 11 shows the ratio of Ssat with AK over service

satisfaction with a fixed Ac commitment value. The delivered
availability (A) and charged price (Pcharged) values are fed
by our simulation results. Each user’s Pcharged is calculated
by taking an initial service cost together with a 20% fixed
margin and a 10% service credit in case the SLO is missed.
As seen, no matter what the values of λ and γ in (13) are,
users would always be more satisfied on average using AK
vs. not using AK4. It is also worth noting that as users
become less willing to pay more for higher reliability (γ →
0), the satisfaction improvement offered by AK becomes less
significant.

6.3 Benefits of BVM
The concept of BVM was described in Section 2.2.1. To
demonstrate how BVM lowers the costs, we simulate a data
center with 2,000 machines and 25,000 users having a uni-
form demand distribution in the [99.901%,99.999%] range.
The data center resources have three categories of servers, A,
B, and C, with an MTBF of 5, 3, and 1 year(s), respectively.
The simulated data center has 200, 600, and 1,200 machines
of types A, B, and C. BVM is performed every hour for the
top 10% over-served users. Depicting normalized utilization
of different machine types during a 30-day period, Figure 12
demonstrates how BVM offloads VMs to cheaper less reli-
able resources when possible. For this specific example, de-

4 Result is independent of ω , as it is a common factor of numerator and
denominator.
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Figure 12. Applying BVM offloads VMs to cheaper less re-
liable resources when possible. Utilization of each machine
type is normalized to its total compute capacity.

[TypeA,TypeB,TypeC] Cost Redu. (%) ∆ Miss Rate (%)
[50,150,800] 5.8 0.60
[50,250,700] 5.3 0.58

[100,300,600] 6.6 0.69
[150,350,500] 5.3 0.65
[200,400,400] 3.6 0.63
[300,400,300] 2.5 0.76
[450,100,450] 2.4 0.68

Table 5. Dependence of BVM cost reduction and induced
SLO misses on machine type blend.

spite the small increase in SLO misses (0.34%), BVM leads
to a 7.1% cost reduction (considering penalties given back).

Benefits of BVM depend on the resource type blend as
well as resource utilization. Table 5 shows how different
resource type mixtures lead to various cost reductions and
SLO miss rate increases (cost reductions include the in-
creased misses). Figure 13 depicts how resource utilization
affects BVM cost savings. Under low utilization (Region
1), only the cheapest resources are mainly utilized and thus
cheaper resources are not available for benign migrations.
As the number of users increases, machine type B, and even-
tually type A become utilized (Reg. 2, and 3, respectively)
and BVM has more to offer. BVM enjoys the diversity of
resources in Reg. 3, but after some point, the data center
becomes highly utilized and migrations become more and
more difficult. That is the reason why the benefits of BVM
diminishes in Reg. 4, where in this example utilization ex-
ceeds 80%. It is worth mentioning that resource utilization
for cloud data centers ranges from 40 to 70 percent [10], so
going into Reg. 4 is practically unlikely.
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Figure 13. Data center utilization and its impact on BVM
cost savings. Under high resource utilization (Region 4), VM
migration becomes difficult.

6.4 Catastrophic Failures and AK
Catastrophic failures are downtime events that affect a large
number of cloud customers. Such conditions might arise
from electric failures, cascading software misconfigurations,
natural disasters (e.g. Hurricane Sandy), etc. [22]. AK en-
ables customers to have various availability demands, and
thus catastrophic failures have different consequences on its
customers, compared to typical fixed-availability regimes.

To compare the impact of a catastrophic failure on AK
versus typical fixed-availability environments, we investi-
gate how many SLOs are missed due to such an event in
each setting. We simulate two data centers with 3,000 ma-
chines and 36,000 users. While users of one have a uniform
[99%,99.999%] availability demand range, other’s can only
ask for fixed 99.5% availability demands. In order to merely
evaluate the impact of having a flexible API, we use AK’s
availability-aware scheduler in both cases. As seen in Fig-
ure 14, serving customers with fixed availability results in a
sudden rise when the length of failure is more than 3.6 hours,
which is the corresponding monthly downtime of 99.5%
availability. On the other hand, having various availability
demands, the portion of AK customers suffering from the
catastrophic event is relative to the event’s duration.
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Figure 14. Catastrophic failure event hurts AK SLOs dif-
ferently compared to the fixed availability regime.

7. Related Work
The majority of studies on availability/reliability of cloud
computing systems focus on providing high availability.
Fault tolerance through redundancy and replication of VMs
[13, 26], hypervisors [68], data [20, 21, 51], and even hard-
ware [36] has been proposed. Checkpointing is another
method to provide fault tolerance [56]. We refer the reader
to thorough surveys on cloud resiliency techniques [25, 52].

There have been many studies on proactive fault toler-
ance and failure management. Nagarajan et al. [48] define a
transparent, proactive fault tolerance mechanism for MPI ap-
plications in HPC clusters, where VM live migration is pro-
voked by health monitoring. Vallee et al. propose proactive
VM pausing, unpausing, or migration if a fault has been pre-
dicted in computing clusters [64]. Fu [28] proposes a failure-
aware reconfigurable distributed virtual machine (RDVM)
infrastructure for high-availability computing clusters. The
system comprises of a major component, the FailurePredic-
tor, that predicts future failures for each node based on its
performance metrics and previous failure events [30]. In all
of these works, the goal is to offer or maintain high avail-
ability, whereas our system aims to offer different amounts
of availability to a wide range of users.

Javadi et al. build statistical models of failure from avail-
ability traces of Internet-distributed systems and show how
such knowledge can be applied to a resource brokering prob-
lem [38]. AK, however, is designed for IaaS clouds and has
the advantage of serving customers with different availabil-
ity needs.

Some studies have addressed the need for flexible avail-
ability. Undheim et al. [63] develop their cloud model with
a focus on availability and address the need for differenti-
ated SLAs due to the variety of cloud services. Enumerating
the future research opportunities to ensure availability in the
cloud, Moreno-Vozmediano et al. suggest per-service imple-
mentation of availability monitoring and automatic instance

re-deployment [47]. Yaqub et al. introduce an optimal SLA
negotiation scheme, where availability is also a negotiable
parameter [69]. Limrungsi et al. sketch the high-level idea
of on-demand reliability, but their work is mostly devoted
to modeling and simulation of the proposed checkpointing
technique to provide joint reliability maximization [43]. On
the contrary, AK is not just a resilience technique or a SLA
scheme, but rather a comprehensive model to realize the flex-
ible availability in IaaS environments. We explored AK’s
economics, implemented its prototype, and thoroughly eval-
uated different design trade-offs through simulations.

8. Conclusion
In this work, we introduced the Availability Knob (AK) for
IaaS clouds. AK enables new flexibility in conveying avail-
ability needs between cloud customers and providers. By
adding this additional information across the customer/prov-
ider interface, cloud providers can price availability more
flexibly, schedule to meet the availability needs of a partic-
ular cloud customer without wastefully over-delivering, and
build a more dynamic marketplace for availability. We show
that AK can reduce cloud providers costs by more than 10%,
increase provider profit by up to 20%, and improve user sat-
isfaction with the delivered availability. AK has been im-
plemented within the OpenStack framework to demonstrate
that it is easy to add it to real IaaS systems. In conclusion,
AK is a low-impact interface change and scheduler modifi-
cation which can enable benefits for both cloud customers
and providers without a major overhaul to cloud manage-
ment software.
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