
ComputeDRAM: In-Memory Compute Using Off-the-Shelf
DRAMs

Fei Gao
feig@princeton.edu

Department of Electrical Engineering
Princeton University

Georgios Tziantzioulis
georgios.tziantzioulis@princeton.edu
Department of Electrical Engineering

Princeton University

David Wentzlaff
wentzlaf@princeton.edu

Department of Electrical Engineering
Princeton University

ABSTRACT
In-memory computing has long been promised as a solution to the
“Memory Wall” problem. Recent work has proposed using charge-
sharing on the bit-lines of a memory in order to compute in-place
and with massive parallelism, all without having to move data
across the memory bus. Unfortunately, prior work has required
modification to RAM designs (e.g. adding multiple row decoders)
in order to open multiple rows simultaneously. So far, the com-
petitive and low-margin nature of the DRAM industry has made
commercial DRAM manufacturers resist adding any additional
logic into DRAM. This paper addresses the need for in-memory
computation with little to no change to DRAM designs. It is the
first work to demonstrate in-memory computation with off-the-
shelf, unmodified, commercial, DRAM. This is accomplished by
violating the nominal timing specification and activating multiple
rows in rapid succession, which happens to leave multiple rows
open simultaneously, thereby enabling bit-line charge sharing. We
use a constraint-violating command sequence to implement and
demonstrate row copy, logical OR, and logical AND in unmodified,
commodity, DRAM. Subsequently, we employ these primitives to
develop an architecture for arbitrary, massively-parallel, compu-
tation. Utilizing a customized DRAM controller in an FPGA and
commodity DRAM modules, we characterize this opportunity in
hardware for all major DRAM vendors. This work stands as a proof
of concept that in-memory computation is possible with unmodi-
fied DRAM modules and that there exists a financially feasible way
for DRAM manufacturers to support in-memory compute.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Hardware→ Dynamic memory.

KEYWORDS
DRAM, in-memory computing, bit-serial, main memory

ACM Reference Format:
Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. 2019. ComputeDRAM:
In-Memory Compute Using Off-the-Shelf DRAMs. In The 52nd Annual

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358260

IEEE/ACM International Symposium on Microarchitecture (MICRO-52), Octo-
ber 12–16, 2019, Columbus, OH, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3352460.3358260

1 INTRODUCTION
In modern computing systems, moving data between compute re-
sources and main memory utilizes a large portion of the overall
system energy and significantly contributes to program execution
time. As increasing numbers of processor cores have been inte-
grated onto a single chip, the amount of memory bandwidth has
not kept up, thereby leading to a “Memory Wall” [48, 62]. Making
matters worse, the communication latency between compute re-
sources and off-chip DRAM has not improved as fast as the amount
of computing resources have increased.

To address these challenges, near-memory compute [3, 11, 29, 35,
55], Processors-in-Memory [19, 23, 27, 39, 52, 59], and in-memory
compute [28, 33, 46] have all been proposed. This paper focuses
on the most aggressive solution, performing computations with
the memory. Unfortunately, performing computations with mem-
ory resources has relied on either emerging memory technolo-
gies [14, 16, 60] or has required additional circuits be added to
RAM arrays. While some solutions have been demonstrated in sili-
con [1, 2, 45, 57], none of these solutions have gained widespread
industry adoption largely due to requiring additional circuits to be
added to already cost optimized and low-margin RAM implementa-
tions.

In this paper,wedemonstrate a novelmethod that performs
computation with off-the-shelf, unmodified, commercial
DRAM. Utilizing a customized memory controller, we are able to
change the timing of standard DRAM memory transactions, oper-
ating outside of specification, to perform massively parallel logical
AND, logical OR, and row copy operations. Using these base op-
erations and by storing and computing each value and its logical
negation, we can compute arbitrary functions in a massively paral-
lel bit-serial manner. Our novel operations function at the circuit
level by forcing the commodity DRAM chip to open multiple rows
simultaneously by activating them in rapid succession. Previous
works [56, 57] have shown that with multiple rows opened, row
copy and logical operations can be completed using bit-line charge
sharing. However, to achieve this, all previous techniques relied on
hardware modifications. To our knowledge, this is the first work to
perform row copy, logical AND, and logical OR using off-the-shelf,
unmodified, commercial DRAM.

With a slight modification to the DRAM controller, in-memory
compute is able to save the considerable energy needed tomove data
across memory buses and cache hierarchies. We regard this work
as an important proof of concept and indication that in-memory

https://doi.org/10.1145/3352460.3358260
https://doi.org/10.1145/3352460.3358260


MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.

computation using DRAM is practical, low-cost, and should be in-
cluded in all future computer systems. Taking a step further, we
characterize the robustness of each computational operation and
identify which operations can be performed by which vendor’s
DRAM. While our results show that not all vendors’ off-the-shelf
DRAMs support all operations, the virtue thatwe are able to find any
unmodified DRAMs that do support a complete set of operations
demonstrates that DRAM vendors can likely support in-memory
compute in DRAM at little to no monetary cost. In-memory com-
pute also shows potential as an alternative to using traditional
silicon CMOS logic gates for compute. With the slowing and po-
tential ending of Moore’s Law, the computing community has to
look beyond relying on non-scaling silicon CMOS logic transis-
tors for alternatives such as relying more heavily on in-memory
computation.

This work has the potential for large impact on the computing
industry with minimal hardware design changes. Currently, DRAM
is solely used to store data. Our discovery that off-the-shelf DRAM
can be used to perform computations, as is, or with nominal mod-
ifications by DRAM vendors, means that with a small update to
the DRAM controller, all new computers can perform massively
parallel computations without needing to have data transit the
memory bus and memory hierarchy. This massively parallel bit-
serial computation has the potential to save significant energy and
can complete computations in-parallel with the main processor.
We envision this type of computing being used for data-parallel
applications or sub-routines within a larger application. Prior work
has even proposed using such architectures applied to image [53]
and signal [10] processing, computer vision [20], and the emerging
field of neural networks [21].

The main contributions of this work include:
• This is the first work to demonstrate row copy in off-the-
shelf, unmodified, commercial, DRAM.

• This is the first work to demonstrate bit-wise logical AND
and OR in off-the-shelf, unmodified, commercial, DRAM.

• We carefully characterize the capabilities and robustness
of the in-memory compute operations across DDR3 DRAM
modules from all major DRAM vendors.

• We characterize the effect that supply voltage and tempera-
ture have on the introduced operations’ robustness.

• We present an algorithmic technique for performing arbi-
trary computations based on non-inverting operations. This
is key as the DRAM bit-line charge sharing operations only
support non-inverting operations.

• We construct a software framework to run massively parallel
bit-serial computations and demonstrate it in a real system.

2 BACKGROUND
This section provides a brief introduction on DRAM operations, fo-
cusing on the attributes that affect our design; a detailed description
of DRAM memory organization is discussed by Jacob et al. [32].

2.1 DRAM System Organization
DRAMmemory follows a hierarchical system organization of: chan-
nels, ranks, banks, and rows/columns (Figure 1). An example orga-
nization could have one DIMM (dual in-line memory module) per

Channels

ChipsBanks

G
lo
ba

lR
ow

De
co
de

r

Global I/OCol Addr

Sub-array

Global Row Buffer

Sub-arrayRo
w
Ad

dr

Global Bit-line

G
lo
ba

lW
or
d-
lin

e

Ro
w
D
ec
od

er

Sense Amplifier
Local Row Buffer

ro
w
s

W
or
d-
lin

eBit-line
columns

Memory
Controller CPU

Figure 1: DRAM hierarchy

channel, and up to two ranks per module. Each rank consists of
eight physical chips, which are accessed in parallel and share the
same command bus. When memory is accessed, all chips see the
same address, and the data read out from different chips in one rank
are concatenated. Each chip contains eight independent banks, and
each bank is composed of rows and columns of DRAM memory
cells. A row refers to a group of storage cells that are activated
simultaneously by a row activation command, and a column refers
to the smallest unit of data (one byte per chip) that can be addressed.
Since it is impractical to use a single row decoder to address tens of
thousands of rows in a bank, or to use long bit-lines to connect the
cells in a bank vertically, the bank is further divided into sub-arrays,
each of which contains 512 rows typically. Within a sub-array, each
bit-line connects all the cells in one bit of a column and the sense
amplifier at the local row buffer.

As the processor (or I/O device) operates, it generates a stream of
memory accesses (reads/writes), which are forwarded to the Mem-
ory Controller (MC). The MC’s role is to receive memory requests,
generate a sequence of DRAM commands for the memory system,
and issue these commands properly timed across the memory chan-
nel. Deviation from the DRAM timing specification directly affects
the operation. The generated side-effects from non-nominal op-
eration of a DRAM module can affect the stored data. It is these
non-nominal side-effects that our work exploits for performing
computation with memory.

2.2 DRAM commands and timing
In this section, we detail the attributes of the DRAM commands
and timing that are important for our technique. Four commands
are essential for DRAM:
1 PRECHARGE: The PRECHARGE command applies to a whole bank.
It first closes the currently opened row by zeroing all word-lines in
the target bank, and subsequently drives all bit-lines to Vdd/2 as an
initial value.
2 ACTIVATE: The ACTIVATE command targets a specific row. Be-
fore an ACTIVATE is issued, a PRECHARGE command must be sent to
the corresponding bank to ensure the initial voltage on the bit-line
is Vdd/2. In nominal operations, at most one row can be activated
in a bank at any time [37]. During ACTIVATE, the word-line of the
addressed row is raised high, which connects the cells of that row
directly to the bit-lines. Charge sharing then occurs between the
storage cell and the bit-line. Although the capacitance of the cell is
relatively small compared to the bit-line’s, it could still make the



ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs MICRO-52, October 12–16, 2019, Columbus, OH, USA

ACT
(R1) IDLE IDLE PRE IDLE IDLE ACT

(R2)

T1 T2

CLK

CMD T1 T2

CLK
CMD ACT IDLE RD IDLE

B1 B1
R1 Col1

PRE IDLE ACT

B1 B1
R1 R2ADDR

BANK
≥ "#$% ≥ "#&≥ "#'(

≥ "#$

Figure 2: An example command sequence to read theDRAM
from bank B1, row R1. If we want to read from another row
R2 in the same bank, we need to first precharge that bank
and activate R2.

bit-line voltage slightly higher or lower than Vdd/2, depending on
the value stored in the cell. After the voltage on the bit-line is raised
or lowered from Vdd/2, a sense amplifier is enabled which drags
the voltage to Vdd or GND, thereby amplifying the value held in
the bit-line. At the same time, the bit-cell is still connected to the
bit-line, thus the value in the cell is preserved. Finally, the global
bit-lines connect the output of the activated local row buffer to the
global row buffer.
3 READ / 4 WRITE: The READ/WRITE commands apply to four or
eight consecutive columns according to the burst mode. Based on
the starting column address, the corresponding columns of data in
the global row buffer are read out to or written from the I/O pins.
Nominally, these commands must be sent after a row is activated in
that bank, so that the target row is stored in the global row buffer.

As different commands take different amounts of time to com-
plete, it is the responsibility of the memory controller to space out
each command in order to not violate the nominal DRAM timing,
thereby, ensuring reliable and correct operation. We present a stan-
dard DRAM read procedure in Figure 2 with marked time intervals
tRCD , tRAS , tRP , and tRC , which are discussed below:

• Row Access to Column Access Delay (tRCD ): the minimum
time between an ACTIVATE and a READ/WRITE.

• Row Access Strobe (tRAS ): the minimum time after the ACTI-
VATE that a PRECHARGE can be sent. This is time used to open
a row, enable the sense amplifier, and wait for the voltage to
reach VDD or GND.

• RowPrecharge (tRP ): theminimum time after the PRECHARGE
in a bank before a new row access. It ensures that the pre-
viously activated row is closed and the bit-line voltage has
reached Vdd/2.

• Row Cycle (tRC = tRAS +tRP ): the interval required between
accesses to different rows in the same bank.

In this work, we explore how command sequences that violate
tRP and tRAS can implement new functionality in DRAM.

3 COMPUTE IN DRAM
DRAM modules rely on MCs for correct operation, meaning that
the adherence to DRAM timing constraints and the correct ordering
of command sequences are enforced by the MC. This responsibil-
ity provides interesting opportunities to the MC designer to use
the DRAM outside of specification [12, 36, 47]. Violation of tim-
ing constraints leads to non-nominal states in the DRAM which
can potentially affect the stored data, either constructively or de-
structively. In this section, we detail how to transform a sequence

T1 T2ACT
(R1) IDLE IDLE PRE IDLE IDLE ACT

(R2)

T1 T2

CLK

CMD

CLK
CMD ACT IDLE RD IDLE

B1 B1
R1 Col1

PRE IDLE ACT

B1 B1
R1 R2ADDR

BANK
≥ "#$% ≥ "#&≥ "#'(

≥ "#$

Figure 3: Command sequence for in-memory operations.We
vary T1 and T2 to perform different operations.

of commands with nominal timing, into a sequence that violates
timing constraints but performs in-memory computations.

Our contribution lies on identifying the command sequence and
timing pairs that force the DRAM into a state where charge sharing
occurs. The idea of utilizing charge sharing to perform operations
has been previously discussed by Shibata et al. [58], Yang et al. [65],
Craninckx et al. [15], and Monteiro [49]. Similarly, the idea of open-
ing multiple rows to perform operations on the bit-line has been
discussed by Akerib et al. [4], Aga et al. [1], Seshadri et al. [56, 57],
and Li et al. [45]. However, all previous work required hard-
ware modifications to enable in-memory computing. In con-
trast, in our work, by using specially-timed commands that violate
timing specification, we managed to perform row copy and logical
AND/OR operations without requiring any hardware modification
in commodity, off-the-shelf DRAMs.

Our starting point is the command sequence in Figure 3. Three
commands, ACTIVATE(R1), PRECHARGE, and ACTIVATE(R2), that tar-
get two different rows (R1 and R2) of the same bank are executed.
The timing intervals between commands are labelled T1 and T2,
and are controlled by the number of idle cycles in between. Under
nominal operation, where T1 is required to be longer than tRAS ,
and T2 longer than tRP , this command sequence will open row R1,
close it, and then open row R2, without any effect on the data stored
in these rows. However, by appropriately reducing the timing in-
tervals T1 and T2, outside the specification limits, we can force the
chip to reach a non-nominal state that realizes a set of different
basic operations.

3.1 Basic In-Memory Operations
By violating the timing constraints, we are able to perform three
basic in-memory operations: row copy (a copy of data from one
row to another), logical AND, and logical OR. To achieve the dif-
ferent basic operations with the same command sequence as seen
in Figure 3, we manipulate the timing intervals and the initial data
stored in memory.

3.1.1 Row Copy. Row copy is the simplest among the three oper-
ations and performs a copy from one row, R1, to another, R2. To
perform row copy, we load the data of R1 into the bit-line, and then
overwrite R2 using the sense amplifier. We achieve this by reducing
the timing interval T2, shown in Figure 3, to a value significantly
shorter than tRP . This causes the second ACTIVATE command to
interrupt the PRECHARGE command. In regard to T1, the only re-
quirement for it is to be long enough for the sense amplifier to fully
drive the bit-line with the data contained in row R1. Note that the
value of T2 must not be too short as it could allow another row
to be opened. This can be exploited to construct other operations
(AND/OR) but is destructive for row copy.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.
ACT(R1) ACT(R2)PRE

ACT(R1) ACT(R2)PRE

1 2 3 4
time

TODO: adjust the gray level

5

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

6

T1 T2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

T1 = T2 = 0 idle cycle

T1 T2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

R3=002

R2=102

R1=012

Operand:1

Constant:0

Operand:0

01 R1

00 R3

10 R2

changing
row

address

SA

!""
2

R1

R2

SA

!""
2

01 R1

00 R3

10 R2

changing
row

address

SA

R3=002

R2=102

R1=012

Constant:1

Operand:0

Operand:1

!""
2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

T1 = T2 = 0 idle cycle

Figure 4: Timeline for a single bit of a column in a row copy
operation. The data in R1 is loaded to the bit-line, and over-
writes R2.

As the ACTIVATE and PRECHARGE commands generate the same
effect across all columns of a row, we focus on a single bit of a col-
umn to provide insight into how row copy works. Figure 4 provides
the timeline of a row copy operation for a single bit of a column.
The rectangular boxes represent bit-line and cell capacitors. The
boxes’ width corresponds to the capacitance (C) and their height
represents the voltage (V ), thus the area of the shadowed portion
corresponds to the charge (Q = CV ). The voltage level of Vdd/2
is marked on the bit-line capacitor. Bold lines indicate that the
word-line is open, or the sense amplifier is enabled.

Starting from left to right in Figure 4, we see each step of the
operation. The initial state of the column is that of: the bit-line
set to Vdd/2, the cell in R1 charged (storing one), and the cell in R2
discharged (storing zero). In step 1 , we send the first ACTIVATE
command, which opens the row R1. Step 2 shows the result of
the charge sharing, and the sense amplifier starting to drive both
the cell in R1 and the bit-line to Vdd . This step lasts for a while to
allow R1 to recover the charge in its cell. In step 3 , we execute the
PRECHARGE command, which will attempt to close row R1 and drive
the bit-line to Vdd/2. The state of the column after a period of T2
from executing the PRECHARGE command is shown in step 4 . At
this point, the word-line of R1 has been zeroed out to close R1, but
the bit-line did not have enough time to be fully discharged to Vdd/2
yet, and the bit-line voltage level is way above the middle point. At
the same time, the second ACTIVATE command is executed so as
to interrupt the PRECHARGE process. The second ACTIVATE opens
row R2 and the charge starts to flow from the bit-line to the cells
in R2. As the capacitance of the bit-line is much larger than the
cell’s [56], a relatively significant amount of charge is stored in
the bit-line, and the bit-line voltage can still be larger than Vdd/2
after the charge sharing, as shown in step 5 . Thus, when the sense
amplifier is enabled to drive the bit-line, together with the cell in
R2, it will reinforce their values toVdd . This successfully completes
the copy of data from row R1 to row R2 in step 6 .

ACT(R1) ACT(R2)PRE

ACT(R1) ACT(R2)PRE

1 2 3 4
time

TODO: adjust the gray level

5

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

6

T1 T2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

T1 = T2 = 0 idle cycle

T1 T2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

R3=002

R2=102

R1=012

Operand:1

Constant:0

Operand:0

01 R1

00 R3

10 R2

changing
row

address

SA

!""
2

R1

R2

SA

!""
2

01 R1

00 R3

10 R2

changing
row

address

SA

R3=002

R2=102

R1=012

Constant:1

Operand:0

Operand:1

!""
2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

T1 = T2 = 0 idle cycle

Figure 5: Logical AND in ComputeDRAM. R1 is loaded with
constant zero, and R2 and R3 store operands (0 and 1). The
result (0 = 1 ∧ 0) is finally set in all three rows.

From the above procedure, two observations can be made. First,
the row copy operation relies on charge sharing on the bit-line,
which requires that the source and destination rows must share the
same physical bit-line. Thus, due to the physical implementation
of banks, the row copy operation is restricted to rows within the
same sub-array. Second, the essential part of row copy are the
two consecutive ACTIVATE commands. However, the PRECHARGE
command is indispensable to the operation as we found that
the second ACTIVATE would not be recognized by the DRAM
if we did not interpose the PRECHARGE command before it.

3.1.2 AND/OR. By further reducing the timing intervals in the
command sequence of Figure 3, we managed to open three dif-
ferent rows simultaneously. This allows us to utilize the charge
sharing result to build logical operations, which happen in-place.
We store all-zeros or all-ones to one of the opened rows in advance,
execute the command sequence, and the logical AND/OR of the
other two rows will finally appear in all three rows. We discuss
how to preserve the operands in Section 4.2.

More specifically, in order to perform the logical AND/OR oper-
ations, we set both T1 and T2 to the minimum value, which means
we execute the ACTIVATE(R1), PRECHARGE, and ACTIVATE(R2) com-
mands in rapid succession with no idle cycles in between. Assuming
that the addresses of the two rows, R1 and R2, are selected appropri-
ately, the resulting command sequence will cause a single third row
R3 to be opened implicitly. We present the timeline of AND and OR
operations in Figures 5 and 6, respectively. The rows shown in the
figures are consistent with the physical layout: the row addresses
are 0, 1, and 2 from top to bottom. Notice that both operations use
exactly the same commands and timing. The only two differences
are the rows used to store operands, which are enclosed in rectan-
gles in the figure, and the operation-selecting constant saved in the
remaining row.



ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs MICRO-52, October 12–16, 2019, Columbus, OH, USA

ACT(R1) ACT(R2)PRE

ACT(R1) ACT(R2)PRE

1 2 3 4
time

TODO: adjust the gray level

5

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

6

T1 T2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

T1 = T2 = 0 idle cycle

T1 T2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

R3=002

R2=102

R1=012

Operand:1

Constant:0

Operand:0

01 R1

00 R3

10 R2

changing
row

address

SA

!""
2

R1

R2

SA

!""
2

01 R1

00 R3

10 R2

changing
row

address

SA

R3=002

R2=102

R1=012

Constant:1

Operand:0

Operand:1

!""
2

time
1 2 3 4 5

1 2 3 4 5

ACT(R1) PRE ACT(R2)

T1 = T2 = 0 idle cycle

Figure 6: Logical OR in ComputeDRAM. R3 is loaded with
the constant one, and R1 and R2 store operands (0 and 1). The
result (1 = 1 ∨ 0) is finally set in all three rows.

As before, in step 1 of Figures 5 and 6, we send the first ACTIVATE
command which opens R1. In contrast to the procedure for row
copy, we interrupt the first ACTIVATE by sending the PRECHARGE
immediately after it in step 2 . Due to the short timing interval,
T1, between the two commands, the sense amplifier is not enabled
yet. This is important, because otherwise, the value in R1 will
be restored in the bit-line and will overwrite other rows in the
end. In step 3 , the second ACTIVATE is sent, thus interrupting the
PRECHARGE command. As described in Section 2, the PRECHARGE
command does two things: it zeros out the word-line to close the
opened row, and drives the bit-line to Vdd/2. An adequately smallT2
timing interval can prevent both parts from being realized, meaning
that the opened row R1 will not be closed. On its execution, the
second ACTIVATE command will change the row address from R1
to R2. In the process of changing the activated row address, an
intermediate value R3 appears on the row address bus. Previously,
the PRECHARGE was interrupted right in the beginning, so the bank
is still in the state of “setting the word-line” as in the activation
process. This will drive the word-line according to the value on the
row address bus, leading to the opening of the intermediate row R3.
Besides this intermediate row, the specified destination R2 will be
opened at the end of step 3 . Remember that R1 is kept open from
the start, therefore we have three different rows simultaneously
activated. After the charge sharing, all cells and the bit-line reach
to the same voltage level in step 4 . Whether the resultant voltage
is above Vdd/2 or not depends on themajority value in the cells of
R1, R2 and R3; we later discuss how to implement logical AND/OR
based on this by setting the operation-selecting constant row in
advance. Finally, in step 5 , the result is stored in all three rows.
Similar to the row copy operation, the logical AND/OR operations
can be performed only within rows of the same sub-array.

An important consideration when implicitly opening a third row
is how to control which row is opened. According to our experiment,

R1R2
R3

00 01 10 11

0 0 0 X 1
1 0 1 1 1

Figure 7: Truth table for the results produced from charge
sharing among rows R1, R2 and R3.

when R1 is 012 and R2 is 102, R3 = 002 is opened. Furthermore, we
observed that the order of activation influences the behavior: when
R1 and R2 are 102 and 012 respectively, R3 = 112 is opened instead.
Based on this observation, we speculate that the row address is
updated from least to most significant bit, as shown in the middle
section of Figures 5 and 6. Notice that in the case that the addresses
of R1 and R2 have more divergence in their bits, we found that
additional rows (more than three) are opened. To exert control over
the behavior of our operations and for simplicity, we fix the lower
two bits of the addresses of R1 and R2 to 012 and 102 and require
their higher bits to be identical. This forces the address of R3 to
have its two lower bits be 002 and higher bits be the same as R1
and R2, ensuring that only one intermediate row is activated.

We now discuss how the content of the rows affects the outcome
of the operation, and how we construct logical AND/OR. Theoret-
ically, assuming that the cell capacitance in all three rows is the
same and that they are activated simultaneously, the outcome of
the operation would be the majority value. That is, if at least two
rows hold a value of one, the outcome will also be one, and vice
versa. However, in reality, we open row R1 first, therefore it has
more time to influence the bit-line, thus the three rows are not
equivalent. Figure 7 presents the truth table from experimentally
collected results for all combinations of values in R1, R2, R3. Apart
from the combination where R1 = 1, R2 = 0, and R3 = 0, marked
with X to indicate an unpredictable outcome, all other combinations
generate the desired result. Based on this observation, we only use
the combinations from the truth table in Figure 7 that generate
robust results, choosing the appropriate rows as operands and the
remaining as the initial constant, to implement the logical AND/OR
operations. Fixing the value of R1 to zero reduces the truth table
to the dotted circle, meaning a logical AND would be performed
on the values in R2 and R3. Similarly, by fixing the value of R3 to
constant one, we reduce the truth table to the solid circle, this time
performing a logical OR on the values in R1 and R2.

Therefore, in addition to the timing intervals, another prerequi-
site of logical AND/OR is the constant zero/one. Before we perform
an AND operation, we need to copy all-zeros to the row R1. For OR
operation, similarly, we need to copy all-ones to the row R3. When
the DRAM is initialized for computation, we store constant zeros
and ones into two reserved rows in each sub-array.

3.2 Influence on Refresh Rate
Compared with normal memory access, we need to think about
whether our in-memory compute operations require a closer pre-
vious refreshment and whether they give a shorter retention time
to the cells they touch. For the logical AND/OR operations, we do



MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.

assume that the cells in all three operand rows are fully charged/dis-
charged, which means they need to be refreshed just before the
operation. In our implementation, as described in Section 4.2, we
copy operands to reserved rows to perform AND/OR, thus they are
always recently refreshed. For row copy, the first ACTIVATE is not
interrupted and the sense amplifier is enabled. So, as long as the
charge in the cell is good for a normal access, it should be good for
a row copy. We preserved enough time after the last ACTIVATE for
both row copy and AND/OR, thus the retention time should not
be influenced. Only the retention time for the source row in a row
copy might be reduced due to a shortT 1 (in Figure 3). However, the
length of T 1 is not critical to the functionality, and can be enlarged
to make it more conservative.

3.3 Operation Reliability
In previous sections, we described the command sequence and
timings that perform the row copy and logical AND/OR operations.
Under ideal conditions, the operations should reliably produce
the desired computations. However, through our experiments, we
observed instances of rows and columns that when utilized would
produce erroneous results. The source of these errors stems from
manufacturing variations across columns and the practice of row
remapping to circumvent faulty cells [43].

3.3.1 Manufacturing Variations. Due to imperfections in the manu-
facturing process, size and capacitance of elements are not uniform
across the chip [13, 44]. These variations make the columns be-
have differently given the same command sequence. The behavior
divergence leads to a partial execution of an operation (e.g., only
a portion of the columns in a row are copied with a row copy
operation), or erroneous results. The offending columns are not
necessarily incapable of performing the operation. Rather, we have
found that often they require different timing intervals to achieve
the operation. As it is not always possible to find a timing inter-
val that makes all columns work, the timing interval that covers
most columns is selected. The columns that still fail to perform the
operation are regarded as “bad” columns and are excluded from
in-memory computations.

3.3.2 Row Remapping. Apart from variations due to the manu-
facturing process, imperfections that render some DRAM cells un-
usable can also manifest. Such errors are discovered and resolved
during post-manufacturing testing, with the row addresses point-
ing to these faulty cells being remapped to redundant rows [5].
This creates a complication to our technique. To perform our in-
memory computing operations, we ensure that the operand rows
are in the same sub-array by checking their addresses. However,
for the remapped rows, the row addresses are not consistent with
the physical locations. As we cannot guarantee that they are in the
same sub-array with any other row, we mark these as “bad” rows to
be excluded from in-memory computations. Section 4.5 discusses
how we use software remapping and an error table to solve these
challenges.

4 IN-MEMORY COMPUTE FRAMEWORK
In the previous section, we described how we implemented three
basic in-memory operations. However, the three operations fall

short of allowing us to perform arbitrary computations as inversion
is needed for generality. Furthermore, as variations and defects
in DRAM memories are inevitable, there will always be rows and
columns that cannot be used for computation. In the following
section, we propose a software framework that could perform ar-
bitrary computations using the three basic operations as building
blocks. In parallel, we address the issue of errors due to process
variation and manufacturing imperfections.

4.1 Arbitrary Computations with Memory
Having the row copy and logical OR/AND operations as a start-
ing point, the missing functionality for arbitrary computations is
the NOT operation. To resolve this limitation, previous work sug-
gested in situ implementation of the NOT operation in DRAM [57].
We propose an alternative approach that avoids modifications to
DRAM design and requires the existence of both the regular and
the negated version of a value to perform computations. Thus, all
variables in our model are composed of two parts: one in regular
form and one negated. The availability of both versions is then
utilized to create universal functions such as NAND, which could
be used to build arbitrary computations. Equations 1 to 5 provide
examples of different possible operations. The right-hand side of
all equations is constructed using only logical AND and OR.

To allow for arbitrary computations at any given point of execu-
tion, for every nominal computation, additional steps need to be
taken to generate the negated pair. For example, to compute XOR
between A and B, using only AND/OR operations and the negated
inputs requires three operations: Ā ∧ B, A ∧ B̄, and the logical OR
of the two previous results. Under our scheme, an additional three
operations (Ā ∨ B̄, A ∨ B, and the logical AND of the two previous
results) are required to compute XNOR, so as to extend the pairwise
value invariant of our framework to subsequent computations. As
is evident, the adoption of a pairwise value format utilizes twice
the amount of memory space and twice the number of operations.
We believe that compared to the improvements in functionality,
these overheads are acceptable. The performance overhead imposed
by the pairwise value format is alleviated by the mass parallelism
that row-wise computation enables. Furthermore, we actually don’t
have to calculate all the negated intermediate values for some com-
plex functions. Through logical minimization, some intermediate
steps can be reduced.

NOT: ¬(A, Ā) = (Ā, A) (1)

AND: (A, Ā) ∧ (B, B̄) = (A ∧ B, Ā ∨ B̄) (2)

OR: (A, Ā) ∨ (B, B̄) = (A ∨ B, Ā ∧ B̄) (3)

NAND: ¬((A, Ā) ∧ (B, B̄)) = (Ā ∨ B̄, A ∧ B) (4)

XOR: (A, Ā) ⊕ (B, B̄) = ((Ā ∧ B) ∨ (A ∧ B̄), (Ā ∨ B̄) ∧ (A ∨ B)) (5)

4.2 Implementation Choices
AND and OR operations can be performed on many different pairs
of rows in one sub-array. But as shown in Figures 5 and 6, the
computation result overwrites the data in all of the three opened
rows. In order to preserve the operands, and also to make the soft-
ware simple and consistent, we only perform the computation in
the first three rows in each sub-array. More specifically, the lower
nine bits of R1, R2 and R3 are always 0000000012, 0000000102 and



ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs MICRO-52, October 12–16, 2019, Columbus, OH, USA

1 0 1

0 1 0

1 1 0

0 0 1

1 1 1

0 0 0

0 0 0

1 1 1

1 1 1

0 0 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1 0 1

0 1 0

1 1 0

0 0 1

1 1 1

0 0 0

0 0 0

1 1 1

0 0 1

1 1 0

1 1 0

0 0 1

1 0 1

0 1 0

1 1 0

0 0 1

1 1 1

0 0 0

0 0 0

1 1 1

1 0 0

0 1 1

0 0 1

1 1 0

1 1 1

0 0 0

Reserved
lines for
computation

Array A

Array B

Array S

Carry C

time

1 0 1

0 1 0

1 1 0

0 0 1

1 1 1

0 0 0

0 0 0

1 1 1

1 1 1

0 0 0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

A A A

0 1 2

1 1 1

0 0 0

0 0 0

1 1 1

0 0 1

1 1 0

1 1 0

0 0 1

1 0 1

0 1 0

1 1 0

0 0 1

1 1 1

0 0 0

0 0 0

1 1 1

1 0 0

0 1 1

0 0 1

1 1 0

1 1 1

0 0 0

Reserved
lines for

computation

Vector A

Vector B

Vector S

Carry C

time

!"#
!"#

Figure 8: An example of element-wise ADD in Compute-
DRAM. Each vector has three, 2-bit elements. Each element
is stored vertically, with nominal bits in white boxes and
negated bits in gray boxes.

0000000002 (assuming 512 rows in a sub-array). These three rows
in each sub-array are reserved for computation in our model. With
more complex software, we could perform more operations in place
without moving data to the designated rows. But for simplicity in
our design, we currently always use row copy to copy the operands
and the operation-selecting constant to these three reserved rows,
perform the computation, and copy the result back to the destina-
tion row.

4.3 Bit-Serial Arithmetic
As our operations work at row-level, a parallelism of 65536× can
be achieved if we perform computation at a single-bit granular-
ity.1Even more parallelism can be exploited if we use multiple
DRAMs on a shared command bus. This makes bit-serial computa-
tion a great candidate for our design.

Bit-serial computing has been previously used with success in
applications such as image and signal processing [8, 10, 17, 53],
Deep Neural Networks (DNN) [21], and computer vision [20] due
to the extremely high throughput it can provide. Another benefit is
the flexibility for arbitrary width computation. The most important
reason to use bit-serial computing is that if we instead used a
bit-parallel approach, we would not be able to perform complex
operations, such as addition, which require carry propagation. This
is because the use of DRAM prohibits us from propagating carry
across different columns.

In our scheme, to perform an operation in DRAM, the input
vectors should be aligned, and have the same length and width. The
Least Significant Bit (LSB) of the value resides in the lowest row
of that vector. The negated bit is stored in the row right above the
nominal bit; the rows holding the negated data are shaded in the
Figure 8.

A vector containingm n-bit items is stored in 2n rows andm
bits of columns, with each item occupying one bit, out of eight,

1There is a total of 65536 bits in a row throughout the module: 8 bits per column, 1K
columns per chip, and eight chips per rank.

of a column. Due to the pairwise value format described in Sec-
tion 4.1 that allows for arbitrary computations, a total of 2n rows
are required. Figure 8 provides an example of an addition in such
a scheme, and a visualization of how the data of a bit-serial com-
putation scheme would be laid out in DRAM. The example works
on two, 2-bit operand vectors, A and B, where A has three items: 0,
2, 1, and the items in B are all 1. The row addresses are marked on
the left. As mentioned in Section 3, the first three rows – 0,1, and
2 – are reserved for performing operations. The rows reserved for
carry propagation – 15 and 16 – are also visible. We have omitted
the rows holding the all-one and all-zero and the rows allocated for
intermediate results.

At first, the carry bits are initialized to zero using the all-zero
constant row. The computation proceeds from low bits to high bits.
Rows 5, 6, 9, 10 are used to calculate the LSB of the summation
vector S and the carry C. The DRAM operations are applied to the
entire row, so all of the three items in S are generated in parallel.
The same operation is performed for subsequent bits, until we have
processed all bits. Finally, the carry bit indicates if any of the items
in S have overflowed.

4.4 Copy Across Sub-arrays
As computation progresses and the variable space grows, wemay be
required to move data across bank sub-arrays. However, we cannot
achieve that using the in-memory row copy operation, as rows in
different sub-arrays don’t share the same bit-lines. In such cases,
we propose to read the whole row from the source sub-array, store
the data in the MC, and then write it into the destination sub-array.
Although the MC would require multiple READ/WRITE commands to
go through the columns of the entire row, this approach is preferable
to the alternative of moving the data between the memory and
processor, as it reduces the distance that data has to travel.

4.5 Error Table
Finally, an essential part of our proposed framework is to address
the reliability problems brought up in Section 3.3. We resolve the
problem of “bad” rows and columns by excluding them from compu-
tations in software. This requires that a thorough scan be performed
on the entire module before it is utilized. The scanning process
would generate an address record of the discovered “bad” columns
and “bad” rows; we call the address record table “error table”. The
error table is utilized on a custom address translation layer between
the software library and the memory command scheduler.

From the perspective of the software library, the items in one
vector are stored in consecutive columns and rows, indexed by
virtual addresses. As the software invokes the provided API func-
tions to perform in-memory computations, the translation layer
while translating virtual to physical addresses skips “bad” columns
and “bad” rows. After the appropriate remapping, the command
sequence is sent from the memory command scheduler. A re-scan
of the DRAM module may be performed periodically to update the
error table with columns and rows that became “bad” as a result
of natural wear out or changes in environmental variables (e.g.
temperature). We evaluate the effect of environmental factors on
our framework in Section 6.3.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.

Host
PC

Application

ComputeDRAM Library

SoftMC software

DRAM FPGA

Host PC

(b) (c)

Peltier plate heater

FPGA SoftMC hardware

DDR3 PHY

Peltier plate heater

Temperature Controller

PCIe

(a)

FPGAFPGA

Temperature Controller
DRAM and Heaters

main.tex

DRAM

Figure 9: (a) Schematic diagramof our testing framework. (b)
Picture of our testbed. (c) Thermal picture when the DRAM
is heated to 80 ◦C.

5 EXPERIMENTAL METHODOLOGY
We evaluated our work using a set of custom testbeds, each com-
posed of a host system and a Xilinx ML605 FPGA board [64] con-
nected through a PCIe bus. Figure 9 presents a schematic diagram
and photos of our hardware testbed.

We leveraged SoftMC v1.0 [30], an open-source programmable
memory controller, to directly control the DRAM module attached
to the FPGA. For our work, we extended SoftMC to support dual-
rank modules and to allow reading and writing non-repetitive bytes
in a burst. SoftMC enables us to experiment with different com-
mand sequences and timing intervals, but also imposes limitations.
The dependence of SoftMC on the Xilinx Vertex-6 MIG module [63]
constrains the operating frequency of the memory command bus
and data bus at 400MHz and 800MHz, respectively, regardless of the
maximum attainable rate of the DRAMmodule. As a result, the tim-
ing intervals in our experiments are quantized to multiples of 2.5ns.
SoftMC can only address a fixed portion of DRAM: a single rank,
containing eight banks, each having 1K columns and 32K rows.
Thus, the overall addressable memory is constrained to 2GB. The
limitations of SoftMC do not influence our design as the provided
functionality enables a representative space for exploration. As, cur-
rently, there is no open source command-level memory controller
for DDR4, we used DDR3 chips for our evaluation. Although DDR4
has a higher working frequency and a lower Vdd , its basic com-
mands are exactly the same as DDR3. Thus, we believe that DDR4
also presents opportunity for performing in-memory operations.

For assessing the effect of different supply voltages on the opera-
tion’s robustness, we re-programed the power management module
of our FPGA to control the supply voltage of the DRAM. For ac-
cessing the effect of temperature on the reliability, we created a
custom setup using peltier devices to heat up both sides of the
DRAM modules; temperature was controlled through temperature
controller boards.2

2HiLetgo W1209 12V DC Digital Temperature Controller Board; resolution, measure-
ment, and control accuracy were at a granularity of 0.1 ◦C and the refresh rate was
0.5 seconds.

Table 1: Evaluated DRAMmodules

Group ID:
Vendor_Size_Freq(MHz) Part Num # Modules

SKhynix_2G_1333 HMT325S6BFR8C-H9 6
SKhynix_4G_1066 HMT451S6MMR8C-G7 2
SKhynix_4G_1333B HMT351S6BFR8C-H9 2
SKhynix_4G_1333C HMT351S6CFR8C-H9 4
SKhynix_4G_1600 HMT451S6AFR8A-PB 2
Samsung_4G_1333 M471B5273DH0-CH9 2
Samsung_4G_1600 M471B5273DH0-CK0 2
Micron_2G_1066 CT2G3S1067M.C8FKD 2
Micron_2G_1333 CT2G3S1339M.M8FKD 2
Elpida_2G_1333 EBJ21UE8BDS0-DJ-F 2
Nanya_4G_1333 NT4GC64B8HG0NS-CG 2
TimeTec_4G_1333 78AP10NUS2R2-4G 2
Corsair_4G_1333 CMSA8GX3M2A1333C9 2

We implement the software framework described in Section 4
by wrapping the software API of SoftMC in functions that imple-
ment basic (row copy, logical AND/OR) and complex (XOR, ADD)
operations, thus providing a higher-level of abstraction to the user.
For all basic operations, the sequence of DRAM commands is first
buffered on the FPGA and then sent to memory as a carefully timed
batch by the hardware part of SoftMC. This ensures that the latency
of the PCIe bus does not affect the timing in operations.

6 EVALUATION
In this section we evaluate our proposed techniques and character-
ize their behavior across a wide range of DRAM chips. We evaluate
across a total of 32 DDR3 DRAMmodules from seven different man-
ufacturers, using at least two modules from each configuration.3
Each module is clustered in one of 13 groups based on its configu-
ration and part number. Table 1 provides a detailed breakdown of
the different DRAM configurations we used. The frequency in the
group ID refers to the maximum attainable data bus frequency. As
we mentioned in Section 5, our testing infrastructure issues mem-
ory commands at a fixed frequency of 400MHz to all the modules,
and the data bus frequency is always 800MHz.

6.1 Proof of Concept
To validate the feasibility of computing with memory, we built a
test benchmark based on the command sequence in Figure 3. Our
test benchmark selects a random sub-array from each bank of a
DRAM module and performs an exploratory scan to identify pairs
of timing intervals that produce successful computations.

At the beginning of the test, the sub-array is initialized to prede-
termined values. Following the execution of the command sequence
with a given pair of timing intervals, we read out the target sub-
array. Based on the comparison with the predetermined values, we
check whether any computation is performed or not. If row copy or
logical AND/OR is found, we record the type of computation and
the row-wise success ratio. The row-wise success ratio is defined

3TimeTec and Corsair are not DRAM IC manufacturers per se, but use chips from other
companies to build modules. The printed serial number on the chips are T3D2568HT-10
and HYE0001831, respectively.



ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs MICRO-52, October 12–16, 2019, Columbus, OH, USA

Figure 10: Heatmap of successfully performed operations for each DRAM group with different timing intervals. The integer
timing intervals represent the amount of idle cycles between memory commands. Each idle cycle takes 2.5ns.

as the ratio of columns with successful computation over the total
number of columns in a row. We ran the test on all 32 modules.

Figure 10 presents the results of our exploratory scan for the 13
different DRAM groups. Due to similarity of results across modules
of the same group, we opted to demonstrate the result of a single
module from each group. Two of the groups, SKhynix_2G_1333
and SKhynix_4G_1333B, have exactly the same results, so we use a
single heatmap for them.

Each colored box in the heatmap provides the row-wise success
ratio for a given pair of timing intervals in command cycles. Thus, a
timing interval T1 = 2 will introduce two idle cycles (5ns) between
the first ACTIVATE and the PRECHARGE commands in Figure 3. As
we are more interested in capturing the feasibility of an operation,
we plot each heatmap using the results from the bank that provided
the highest row success ratio for each module.

Blue(hatched) boxes identify timing interval pairs that resulted in
a row copy operation, whereas green boxes identify timing interval
pairs that resulted in AND/OR operations. Gray boxes indicate
that a third row was modified, but the result did not match any
interesting operation. White boxes indicate that all the data in other
rows remained the same, and there was no meaningful result in the
opened two rows. The shade of each color indicates the row-wise
success ratio in an operation. Darker shades signifies higher success
ratios. Thus, the darkest blue and green colors indicate timing
interval pairs that lead to fully functional in-memory operations.
That is, using the selected timing interval pair, we were able to
produce, across all bits of a row, correct results in at least one sub-
array. The existence of at least one heatmap with both dark blue and
dark green boxes acts as a proof of concept that we can perform
row copy and logical AND/OR using off-the-shelf, unmodified,
commercial, DRAM.

In more detail, from Figure 10, we observe that nearly all config-
uration groups present the capability of performing row copy in
at least a portion of the columns in a sub-array. Furthermore, we

observe that successful timing interval configurations for row copy
follow two patterns: the vertical line pattern and the diagonal line
pattern, with most groups exhibiting a vertical line pattern. The tim-
ing interval pairs in the vertical line pattern support the explanation
in Section 3, where we argue that row copy can be implemented
using a small T2 timing interval. In contrast, DRAMs from Micron,
Elpida, and Nanya exhibit a diagonal pattern. We speculate that in
these cases, it is the sum of T1 and T2 that determines whether the
row copy operation is performed. Thus, the success of the operation
depends on the timing interval between the two ACTIVATE com-
mands, with the timing of the intermediate PRECHARGE command
not affecting the operation. More specifically, we speculate that
DRAM modules in those groups perform a check on the timing
interval between the first ACTIVATE and the PRECHARGE command,
and if the subsequent PRECHARGE command is scheduled too close
to the previous ACTIVATE, it will not be issued immediately. That is,
the PRECHARGE command is buffered inside the chip and is sched-
uled with a delay, meaning that the effective T2 timing interval
is smaller than the one externally defined in our test benchmark.
Thus, the operational rationale for row copy operation in those
groups can still be explained by Section 3.

In regard to logical AND/OR operations, we observe that only
DRAMs in groups SKhynix_2G_1333 and SKhynix_4G_1333B are
able to perform the operations across all columns of the sub-array.
Modules in group SKhynix_4G_1600 can also perform both oper-
ations but not across all columns of the sub-array. Although only
limited groups exhibit the capability of performing AND/OR op-
erations, half of the groups are able to open a third row (shown
using gray boxes in the heatmaps). To realize the logical operations,
charge sharing among three different rows is required, therefore
opening a third row is the key prerequisite for logical operations.
Since these groups have met this key prerequisite, we speculate
that they have the potential to perform AND/OR operations at



MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.

1.0 0.5 0.0
0.00

0.25

0.50

0.75

1.00

CD
F

Elpida_2G_1333Elpida_2G_1333

1.0 0.5 0.0
Column Success Ratio for row copy

Micron_2G_1333Micron_2G_1333

1.0 0.5 0.0
SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333

1.0 0.5 0.0
SKhynix_4G_1333BSKhynix_4G_1333B

1.0 0.5 0.0
Column Success Ratio for AND/OR

0.00

0.25

0.50

0.75

1.00

SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333SKhynix_2G_1333

1.0 0.5 0.0
SKhynix_4G_1333BSKhynix_4G_1333B

Figure 11: The CDF shows the stability of the row copy and AND/OR operation for each memory group.

a different command frequency. We leave the evaluation of this
speculation for future work.

Overall, the most important observation from Figure 10 is the
existence of off-the-shelf, unmodified, commercial, DRAM
modules inwhichwe canperformboth in-memory row copy
and logicalAND/ORoperations. Furthermore, all vendors have
some configurations of DRAM that can perform the row copy op-
eration. The modules in the identified working group, SK hynix
DDR3 DRAMs at 1333MHz, are fabricated and distributed as regular
DRAM memory, and have a wide adoption in commercial config-
urations. Based on the above, we speculate that logical AND/OR
operations could also become operational in other DRAM modules
with minimal hardware modifications and cost. Specifically, for the
modules that cannot perform operations, we hypothesize that there
exist hardware in them that checks the timing of operations and
drops commands that are too tightly timed. Although we don’t
know the details of that hardware due to the lack of public informa-
tion, we believe that removing, or making configurable, this portion
of the design is feasible without significant overhead. At the same
time, such an option will open up more opportunities for research
like ComputeDRAM.

6.2 Robustness of Operations
After presenting a proof of concept for in-memory computing using
off-the-shelf DRAM modules, we proceed to provide a more thor-
ough exploration of the behavior of each operation. An important
consideration for the practical application of our techniques is to
find out the portion of the DRAM chip that can be reliably utilized
by the framework we described in Section 4. To assess that, we
performed a more detailed robustness test for each operation. The
robustness test was performed under nominal supply voltage (1.5V)
and at room temperature (chip temperature = 25-30 ◦C).

6.2.1 Row Copy. We ran the row copy reliability benchmark only
on groups that exhibit the ability of performing perfect row copy in
at least one sub-array –Micron_2G_1333, Elpida_2G_1333, SKhynix_-
2G_1333, SKhynix_4G_1333B. For each module, we fixed the timing
intervals to the pair that generated the best row copy result in the
previous exploratory test. For a single bank from each module, we
performed 1000 times the row copy reliability test, in which differ-
ent randomly-generated data are copied back and forth all over 32K
rows. Subsequently, we produced a success ratio for each column of
a sub-array based on the times that it contained the correct result.
Figure 11 presents the Cumulative Distribution Function (CDF) of
success ratio for the different DRAM groups, with each module in

the group represented by a different line. The data for row copy is
shown in the four leftmost sub-plots of Figure 11. The sharp rise
at the beginning of the CDF indicates that in all modules, at least
half of the columns can reliably perform the row copy operation.
Across different modules, 53.9% to 96.9% of the columns present
100% success ratio when performing the row copy operation. The
flat horizontal line in the CDF indicates that most of the remaining
columns always fail to perform the row copy operation (having a
zero success ratio). This result validates our strategy of producing
an error table of “bad” columns to our software framework and
completely avoid utilizing the offending columns.

6.2.2 AND/OR. Weperformed a similar test for the logical AND/OR
operations. Targeting eight modules from groups SKhynix_2G_-
1333 and SKhynix_4G_1333B, for all sub-arrays in eight banks from
each module, we performed the operations 10000 times, half AND
and half OR, on the first three rows. Again, the operands used in the
test are randomly generated. Subsequently, we produced a success
ratio for each column of a sub-array. In the two rightmost sub-plots
of Figure 11, we can see a sharp rise in the start of those CDFs.
Among our tested modules, 92.5% to 99.98% percent of columns
exhibit 100% success ratio when performing the logical AND/OR
operations.

6.3 Effect of Supply Voltage and Temperature
Having as a reference the robustness study at nominal conditions,
we expanded our study to supply voltages from 1.2V to 1.6V, with
a step of 0.05V, and chip temperatures from 30 ◦C to 80 ◦C, with
a step of 5 ◦C. The range of our study was dictated by practical
considerations. For supply voltage, the upper limit is imposed by
the infrastructure, while the lower limit is imposed by the fact that
most of the DDR3 modules we tested could not be read/written
with a supply voltage below 1.2V. For temperature, we chose to
start from room temperature and study up to 80 ◦C on the DRAM
package, as temperatures outside this range are not common for
commodity applications. Timing intervals are fixed to the optimal
ones identified on the exploratory scan (see Figure 10). Similar to
the initial robustness test, under each environment setup, we ran 10
row copy scans and 100 AND/OR scans, and collected the success
ratio for each column.

6.3.1 Supply Voltage. The top part of Figure 12 presents how the
amount of the columns that perform row copy and AND/OR opera-
tions reliably (100% success ratio) changes as a function of supply



ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs MICRO-52, October 12–16, 2019, Columbus, OH, USA

1.2 1.3 1.4 1.5 1.6
Voltage (V)

0.00

0.25

0.50

0.75

1.00
Row copy

1.2 1.3 1.4 1.5 1.6
Voltage (V)

AND/OR

304050607080
Temperature (°C)

0.00

0.25

0.50

0.75

1.00

Po
rt

io
n 

of
 c

ol
um

ns
 t

ha
t

re
lia

bl
y 

pe
rf

or
m

 o
pe

ra
ti

on
s

Elpida_2G_1333
Micron_2G_1333

SKhynix_2G_1333
SKhynix_4G_1333B

304050607080
Temperature (°C)

Figure 12: The portion of columns that could reliably per-
form operations with varied supply voltage and tempera-
ture for different DRAM groups.

Figure 13: Heatmap of successfully performed operations at
a supply voltage of 1.2V – only DRAM groups that reliably
performed operations at nominal voltage are included; for
interpreting colors, see the colorbar of Figure 10.

voltage for different memory groups. Each line represents the aver-
age result among the modules in that group.

In the top part of Figure 12 we observe that: for row copy, Micron
modules prefer higher voltage, SK hynix modules prefer lower
voltage, and for Elpida modules, the reliability is maximized at
nominal supply voltage. Though the effect of supply voltage on
the reliability differs across vendors, the pattern stays the same
for modules in the same group, thus the behaviour is affected by
implementation choices.

Reducing supply voltage increases propagation delay [54] mak-
ing the circuit “slower”. Thus, assuming a fixed frequency, the time
period of one cycle at nominal supply voltage is equivalent to more
than one cycle at 1.2V supply voltage; that is, the signal needs more
time to fully propagate due to increased propagation delay. There-
fore, if we alter the supply voltage, we could have a slightly changed
“effective” timing interval. The closer this “effective” timing interval

Table 2: Cycles of memory commands for 1-bit operation
using SK hynix modules under our hardware setup

row copy SHIFT AND OR XOR ADD

18 36 172 172 444 1332

is to the “real optimal” timing interval, the higher the success ratio
goes. Because of different implementation details, the “real optimal”
timing intervals vary among the modules from different manu-
facturers. That is the reason why the effect of supply voltage on
reliability differs across manufacturers. For AND/OR operations, as
the voltage drops, the circuit gets so slow that the first ACTIVATE
cannot even open the first row yet. Thus the success ratio drops as
well.

To verify this timing assumption, we conducted a second timing
interval scan using a supply voltage of 1.2V. As we can see in
Figure 13, the optimal timing intervals are larger than the previous
ones, which proves that the lower voltage makes the circuit slower,
and we need more cycles to achieve the same effect.

6.3.2 Temperature. In regard to the effect of temperature on ro-
bustness (see the bottom part of Figure 12), we observe that the
effect of increasing the temperature is similar to lowering the sup-
ply voltage. Essentially, the sub-plots for temperature present a
“zoom in” on the top part of Figure 12. This is because at higher
temperature (inside our range), the circuit’s carrier mobility de-
creases, thus increasing the propagation delay and making the
circuit slower [38, 54]. From the perspective of timing, it has the
same effect as a lower supply voltage. Based on the above results,
we conclude that our system keeps working within a reasonable
variation of supply voltage (±0.1 V) and temperature. Furthermore,
we find that the system designer needs to take into consideration
the operational temperature of the system when selecting memory
vendors.

Overall, we expect that ComputeDRAM enabled DRAMs will
require a production step that “bins” modules based on their ability
to perform in-memory computations, in what voltage and tempera-
ture ranges, and with what level of reliability, similar to the process
for CPUs.

7 DISCUSSION
In this section we present a qualitative discussion of the current
implementation of ComputeDRAM; we enhance this discussion by
including back-of-the-envelop quantitative numbers.

The quantitative calculations are based on an extension of the
software framework discussed in Section 4 that implements a series
of vector functions: element-wise AND, OR, XOR, SHIFT, and ADD.
All extended functionality was constructed using only the three
basic in-memory operations we evaluated in previous sections. The
added operations follow the convention of bit-serial computing that
we described in Section 4.3, allowing us to seamlessly configure
the operation’s bit-width. Table 2 presents the number of cycles
spent on the memory command bus for the computation of a single
bit for each of the vector function. The memory command cycles
spent on N-bit operations can be calculated by scaling N× the data
of Table 2.



MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.

7.1 Computational Throughput
The computational throughput and performance of ComputeDRAM
is significantly affected by the characteristics of the targeted compu-
tation; such as, the level of parallelism and the scale of computation.
Compared against the cost of performing a single scalar operation
in a modern CPU, ComputeDRAMwill not provide any benefit, as a
single ADD operation accounts for over a thousand cycles and the
DRAM command frequency is lower than that of a processor core.
Furthermore, if the data being computed exhibit high locality, the
immense bandwidth out of on-chip SRAMs and Register Files (RF)
can significantly increase peak performance for CPUs. To achieve
high computational throughput, ComputeDRAM exploits the fact
that its computational overhead does not change as we move from
scalar to vector operations, up to vectors of 64K elements (for a
single module), due to the constant cost of performing row-wise
computation across all eight chips of the DRAM. For example, for
row copy, our technique requires 18 memory cycles with a peak
bandwidth of 182GB/s using a single DDR3 module. On Compute-
DRAM, 8-bit AND/OR operations take 1376 cycles providing a peak
throughput of 19GOPS, and 8-bit ADD operation takes 10656 cycles
for a peak throughput of 2.46GOPS. We can enhance this base-
line performance by interleaving the issuing of commands across
different banks. Moreover, we can extract further parallelism by
building a board with multiple DRAM slots, where a single MC will
control all DRAM modules simultaneously through broadcasts in
the shared memory command bus. Thus, ComputeDRAM’s ideal
targets are massive computations that exhibits a large amount of
main memory accesses.

The main overhead of ComputeDRAM is the duplicated com-
putation and storage required by our proposed framework. This
inefficiency can be addressed at the compiler level. As more com-
plex computation is offloaded to ComputeDRAM, the compiler
which is responsible for translating high-level code to a sequence of
DRAM commands can perform optimization to reduce the number
of commands, by minimizing both the nominal and complemen-
tary (negated version) intermediate computations. We have already
manually performed such optimization in the implementation of
the ADD operation in our software framework.

As computation in CPU and DRAM is decoupled, the overall
computational capability of the system is increased. Furthermore,
as computation is moved from the CPU to the main memory the in-
terconnect’s utilization is reduced. This can lead to reduced latency
and runtime.

7.2 Energy Efficiency
The main benefit of ComputeDRAM is its high energy efficiency, as
it eliminates the high energy overhead of transferring data between
CPU and main memory. If data is fetched from memory to the CPU,
computed on, and stored back in memory, ComputeDRAM is 347×
more energy efficient than using a vector unit for row copy, and 48×
and 9.3× for 8-bit AND/OR and ADD, respectively. 4 Our baseline
is the energy used to read the operands from DRAM and write the
result into DRAM, as memory access takes the main portion of
the total energy consumption in our target scenario. We assume

4We used VAMPIRE [26], a command-trace based DRAM power model, for the energy
estimation.

that the data and its compliment is resident in the DRAM at the
beginning of the computation.

Notice that in our work many memory commands are inter-
rupted before their nominal end time. As we did not reduce the
energy cost for these command in the power model, the previous
energy numbers present a conservative estimate.

8 RELATEDWORK & APPLICATIONS
To our knowledge, this is the first work to demonstrate the fea-
sibility of performing row copy, logical AND, and logical OR in
off-the-shelf, unmodified, commercial, DRAM.

Near-memory [3, 11, 29, 35, 55] and in-memory [19, 22, 23, 27,
28, 33, 34, 39–41, 46, 51, 52, 56, 59] computing has been extensively
explored over the past 25 years in an attempt to provide a solution
to the “Memory Wall” problem. In contrast to our work, all past
efforts required hardware modifications.

The concepts of copying data across rows of a DRAM sub-array,
and performing logical operations through multi-row activation
and charge sharing in DRAM memory were, to our knowledge,
first discussed by Seshadri et al. [56, 57]. In contrast to our work,
their designs require hardware modification on the DRAM to al-
low in-memory computations. Modifications to the DRAM control
logic were proposed to allow back-to-back ACTIVATE commands,
a prerequisite of the design for performing a copy between two
rows [56]. In contrast, we were able to successfully implement the
row copy operation, without any modifications to the DRAM, by in-
terposing and quickly interrupting a PRECHARGE command between
two ACTIVATE commands.

Similarly, Seshadri et al. [57] proposed to modify the row decoder
to allow simultaneous activation of three rows, a requirement for
performing logical operations based on charge sharing; coinciden-
tally, a similar work [1] that targeted SRAM caches was published
the same year. In our work, we show (Section 3.1.2) that, without
any modifications to the DRAM, it is feasible to simultaneously
activate three rows by interrupting both ACTIVATE and PRECHARGE
in the command sequence shown in Figure 3.

More generally, multiple prior works proposed the integration of
processing logic inside the DRAM [18, 19, 22, 27, 34, 39, 51, 52, 59], or
modifications on the DRAM design and enhancement on the basic
memory cell to enable native computational capabilities [4, 24, 42].
None of these solutions have gained widespread industry adoption,
largely due to requiring modifications of the existing DRAM design
and additional circuits to be added to cost optimized and low-margin
RAM implementations.

The introduction of 3D-stacked memory architectures where a
logic layer is coupled with a memory scheme (e.g., HMC 2.1 [31]),
enabled the space for designs that expand the logic layer to include
computational capabilities [25, 50]. Though such schemes increase
the available bandwidth, compared to off-chip memory, they fall
short of fully exploiting the internal bandwidth of a DRAM.

In parallel, the emergence of new materials and technologies
for memories has inspired works that study how non-CMOS mem-
ory technologies can be utilized to perform in-memory computa-
tions [28, 33, 40, 41, 46].

Bit-serial architectures were extensively used on early mas-
sively parallel processing (MPP) machines such as the Goodyear



ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs MICRO-52, October 12–16, 2019, Columbus, OH, USA

MPP [6, 7, 9], and Connection Machine CM-1 and CM-2 [61]. More
recently, Micron proposed In-Memory Intelligence [24], a bit-serial
computing in memory architecture. Its single-bit processing units
are able to perform basic operations such as AND and XOR, with
more complex operations constructed through sequences of basic
primitive operations. The high levels of parallelism and through-
put make bit-serial architectures ideal for big-data problems in
image [53] and signal [10] processing, Deep Neural Networks
(DNN) [21], computer vision [20].

9 CONCLUSION
Wehave demonstrated for the first time the feasibility of performing
in-memory operations in off-the-shelf, unmodified, commercial,
DRAM. Utilizing a customized memory controller, we were able
to change the timing of standard DRAM memory transactions,
operating outside of specification, to perform massively parallel
logical AND, logical OR, and row copy operations. We designed an
algorithmic technique to compute arbitrary computations based
on the three available, non inverting, in-memory operations. We
incorporated our algorithmic technique in a software framework to
run massively parallel bit-serial computations and demonstrate it
working in a real system. Finally, we characterized the capabilities
and robustness of the in-memory compute operations across DDR3
DRAMmodules from all major DRAM vendors, and under different
supply voltages and temperatures.

This work has the potential for large impact on the computing
industry with minimal hardware design changes. Currently, DRAM
is solely used to store data. But our discovery that off-the-shelf
DRAM can be used to perform computations, as-is, or with nominal
modifications by DRAM vendors, means that with a small update
to the DRAM controller, all new computers can perform massively
parallel computations without needing to have data transit the
memory bus or memory hierarchy.

ACKNOWLEDGMENTS
This material is based on research sponsored by the National Sci-
ence Foundation (NSF) under Grant No. CCF-1453112 and the Air
Force Research Laboratory (AFRL) and Defense Advanced Research
Projects Agency (DARPA) under agreement No. FA8650-18-2-7862.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of the Air Force Research Laboratory (AFRL), the De-
fense Advanced Research Projects Agency (DARPA), the NSF, or
the U.S. Government.

REFERENCES
[1] Shaizeen Aga, Supreet Jeloka, Arun Subramaniyan, Satish Narayanasamy, David

Blaauw, and Reetuparna Das. 2017. Compute Caches. In High Performance Com-
puter Architecture (HPCA), 2017 IEEE International Symposium on. IEEE, 481–492.

[2] Amogh Agrawal, Akhilesh Jaiswal, Chankyu Lee, and Kaushik Roy. 2018. X-
SRAM: enabling in-memory boolean computations in CMOS static random access
memories. IEEE Transactions on Circuits and Systems I: Regular Papers 99 (2018),
1–14.

[3] Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled
instructions: a low-overhead, locality-aware processing-in-memory architec-
ture. In Computer Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International

Symposium on. IEEE, 336–348.
[4] Avidan Akerib, Oren Agam, Eli Ehrman, and Moshe Meyassed. 2012. Using

storage cells to perform computation. US Patent 8238173B2.
[5] K. Arndt, C. Narayan, A. Brintzinger, W. Guthrie, D. Lachtrupp, J. Mauger, D.

Glimmer, S. Lawn, B. Dinkel, and A. Mitwalsky. 1999. Reliability of laser activated
metal fuses in DRAMs. In Twenty Fourth IEEE/CPMT International Electronics
Manufacturing Technology Symposium. 389–394.

[6] Kenneth E. Batcher. 1980. Architecture of a Massively Parallel Processor. In
Proceedings of the 7th Annual Symposium on Computer Architecture (ISCA ’80).
ACM, New York, NY, USA, 168–173.

[7] Kenneth E. Batcher. 1980. Design of a Massively Parallel Processor. IEEE Trans.
Comput. C-29, 9 (Sept 1980), 836–840.

[8] Kenneth E. Batcher. 1982. Bit-serial parallel processing systems. IEEE Trans.
Comput. C-31, 5 (May 1982), 377–384.

[9] Kenneth E. Batcher. 1998. Retrospective: architecture of a massively parallel
processor. In 25 Years of the International Symposia on Computer Architecture
(Selected Papers) (ISCA ’98). ACM, New York, NY, USA, 15–16.

[10] K. E. Batcher, E. E. Eddey, R. O. Faiss, and P. A. Gilmore. 1981. SAR processing on
the MPP. Technical Report NASA-CR-166726 (N82-11801/9). Goodyear Aerospace
Corporation.

[11] Adrian M Caulfield, Laura M Grupp, and Steven Swanson. 2009. Gordon: using
flashmemory to build fast, power-efficient clusters for data-intensive applications.
ACM Sigplan Notices 44, 3 (2009), 217–228.

[12] Karthik Chandrasekar, Sven Goossens, Christian Weis, Martijn Koedam, Benny
Akesson, NorbertWehn, and Kees Goossens. 2014. Exploiting expendable process-
margins in DRAMs for run-time performance optimization. In Proceedings of the
Conference on Design, Automation & Test in Europe (DATE ’14). European Design
and Automation Association, Article 173, 6 pages. http://dl.acm.org/citation.
cfm?id=2616606.2616820

[13] Kevin K. Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose, Kevin Hsieh,
Donghyuk Lee, Tianshi Li, Gennady Pekhimenko, Samira Khan, and Onur Mutlu.
2016. Understanding latency variation in modern DRAM chips: experimental
characterization, analysis, and optimization. SIGMETRICS Perform. Eval. Rev. 44,
1 (June 2016), 323–336.

[14] Meng-Fan Chang, Shin-Jang Shen, Chia-Chi Liu, Che-Wei Wu, Yu-Fan Lin, Ya-
Chin King, Chorng-Jung Lin, Hung-Jen Liao, Yu-Der Chih, and Hiroyuki Ya-
mauchi. 2013. An offset-tolerant fast-random-read current-sampling-based sense
amplifier for small-cell-current nonvolatile memory. IEEE Journal of Solid-State
Circuits 48, 3 (2013), 864–877.

[15] Jan Craninckx and Geert Van der Plas. 2007. A 65fJ/conversion-step 0-to-50MS/s
0-to-0.7 mW 9b charge-sharing SAR ADC in 90nm digital CMOS. In 2007 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers. IEEE,
246–600.

[16] G. De Sandre, L. Bettini, A. Pirola, L. Marmonier, M. Pasotti, M. Borghi, P. Mat-
tavelli, P. Zuliani, L. Scotti, G. Mastracchio, F. Bedeschi, R. Gastaldi, and R. Bez.
2010. A 90nm 4Mb embedded phase-change memory with 1.2V 12ns read access
time and 1MB/s write throughput. In 2010 IEEE International Solid-State Circuits
Conference - (ISSCC). 268–269.

[17] Denyer, Renshaw Peter B., and David. 1985. VLSI signal processing: a bit-serial
approach. Addison-Wesley Publishing Company, San Francisco, CA, USA.

[18] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. 2014. An
efficient and scalable semiconductor architecture for parallel automata processing.
IEEE Transactions on Parallel and Distributed Systems 25, 12 (Dec 2014), 3088–
3098.

[19] Jeff Draper, Jacqueline Chame, Mary Hall, Craig Steele, Tim Barrett, Jeff LaCoss,
John Granacki, Jaewook Shin, Chun Chen, Chang Woo Kang, Ihn Kim, and
Gokhan Daglikoca. 2002. The architecture of the DIVA processing-in-memory
chip. In Proceedings of the 16th International Conference on Supercomputing (ICS
’02). ACM, New York, NY, USA, 14–25.

[20] Michael Drumheller. 1986. Connection Machine Stereomatching. In Proceedings
of the Fifth AAAI National Conference on Artificial Intelligence (AAAI’86). AAAI
Press, 748–753.

[21] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D. Blaaauw,
and R. Das. 2018. Neural Cache: bit-serial in-cache acceleration of deep neural
networks. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). 383–396.

[22] Duncan Elliott, Michael Stumm, W. Martin Snelgrove, Christian Cojocaru, and
Robert McKenzie. 1999. Computational RAM: implementing processors in mem-
ory. IEEE Design & Test of Computers 1 (1999), 32–41.

[23] Duncan G. Elliott,W.Martin Snelgrove, andMichael Stumm. 1992. Computational
RAM: a memory-SIMD hybrid and its application to DSP. In 1992 Proceedings of
the IEEE Custom Integrated Circuits Conference. 30.6.1–30.6.4.

[24] T. Finkbeiner, G. Hush, T. Larsen, P. Lea, J. Leidel, and T. Manning. 2017. In-
memory intelligence. IEEE Micro 37, 4 (2017), 30–38.

[25] M. Gao, G. Ayers, and C. Kozyrakis. 2015. Practical near-data processing for
in-memory analytics frameworks. In 2015 International Conference on Parallel
Architecture and Compilation (PACT). 113–124.

http://dl.acm.org/citation.cfm?id=2616606.2616820
http://dl.acm.org/citation.cfm?id=2616606.2616820


MICRO-52, October 12–16, 2019, Columbus, OH, USA Gao et al.

[26] Saugata Ghose, Abdullah Giray Yaglikçi, Raghav Gupta, Donghyuk Lee, Kais
Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish Chatterjee,
Aditya Agrawal, Mike O’Connor, and Onur Mutlu. 2018. What your DRAM
power models are not telling you: lessons from a detailed experimental study. In
Abstracts of the 2018 ACM International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’18). ACM, New York, NY, USA, 110–110.

[27] M. Gokhale, B. Holmes, and K. Iobst. 1995. Processing in memory: the Terasys
massively parallel PIM array. Computer 28, 4 (April 1995), 23–31.

[28] Qing Guo, Xiaochen Guo, Ravi Patel, Engin Ipek, and Eby G. Friedman. 2013.
AC-DIMM: associative computing with STT-MRAM. SIGARCH Comput. Archit.
News 41, 3 (June 2013), 189–200.

[29] Anthony Gutierrez, Michael Cieslak, Bharan Giridhar, Ronald G Dreslinski, Luis
Ceze, and Trevor Mudge. 2014. Integrated 3D-stacked server designs for increas-
ing physical density of key-value stores. In ACM SIGPLAN Notices, Vol. 49. ACM,
485–498.

[30] H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D.
Lee, O. Ergin, and O. Mutlu. 2017. SoftMC: a flexible and practical open-source
infrastructure for enabling experimental DRAM studies. In 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 241–252.

[31] Hybrid Memory Cube Consortium. 2014. Hybrid Memory Cube specification
2.1.

[32] Bruce Jacob, Spencer Ng, and David Wang. 2007. Memory systems: cache, DRAM,
disk. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[33] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan. 2018. Computing in memory
with spin-transfer torque magnetic RAM. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 26, 3 (March 2018), 470–483.

[34] Yi Kang,Wei Huang, Seung-Moon Yoo, D. Keen, Zhenzhou Ge, V. Lam, P. Pattnaik,
and J. Torrellas. 1999. FlexRAM: toward an advanced intelligent memory system.
In Proceedings 1999 IEEE International Conference on Computer Design: VLSI in
Computers and Processors. 192–201.

[35] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal
Mukhopadhyay. 2016. Neurocube: a programmable digital neuromorphic ar-
chitecture with high-density 3D memory. In Computer Architecture (ISCA), 2016
ACM/IEEE 43rd Annual International Symposium on. IEEE, 380–392.

[36] Jeremie S Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu. 2018. The DRAM
latency PUF: quickly evaluating physical unclonable functions by exploiting the
latency-reliability tradeoff in modern commodity DRAM devices. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 194–207.

[37] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu. 2012. A
case for exploiting subarray-level parallelism (SALP) in DRAM. ACM SIGARCH
Computer Architecture News 40, 3 (2012), 368–379.

[38] DBM Klaassen. 1992. A unified mobility model for device simulation-II. Temper-
ature dependence of carrier mobility and lifetime. Solid-State Electronics 35, 7
(1992), 961–967.

[39] P. M. Kogge. 1994. EXECUBE - A new architecture for scaleable MPPs. In 1994
International Conference on Parallel Processing Vol. 1, Vol. 1. 77–84.

[40] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,
and U. C. Weiser. 2014. MAGIC - memristor-aided logic. IEEE Transactions on
Circuits and Systems II: Express Briefs 61, 11 (Nov 2014), 895–899.

[41] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman. 2011. Memristor-
based IMPLY logic design procedure. In 2011 IEEE 29th International Conference
on Computer Design (ICCD). 142–147.

[42] Perry V. Lea and Richard C. Murphy. 2018. Apparatuses and methods for in-
memory operations. US Patent 10049721B1.

[43] Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata
Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and Onur Mutlu. 2017.
Design-induced latency variation in modern DRAM chips: characterization, anal-
ysis, and latency reduction mechanisms. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 1, 1 (2017), 26.

[44] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu. 2015.
Adaptive-latency DRAM: optimizing DRAM timing for the common-case. In 2015
IEEE 21st International Symposium on High Performance Computer Architecture
(HPCA). 489–501.

[45] Shuangchen Li, Dimin Niu, Krishna T Malladi, Hongzhong Zheng, Bob Brennan,
and Yuan Xie. 2017. DRISA: A DRAM-based reconfigurable in-situ accelera-
tor. In Proceedings of the 50th Annual IEEE/ACM International Symposium on

Microarchitecture. ACM, 288–301.
[46] Shuangchen Li, Cong Xu, Qiaosha Zou, Jishen Zhao, Yu Lu, and Yuan Xie. 2016.

Pinatubo: a processing-in-memory architecture for bulk bitwise operations in
emerging non-volatile memories. In Proceedings of the 53rd Annual Design Au-
tomation Conference. ACM, 173.

[47] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu. 2013.
An experimental study of data retention behavior in modern DRAM devices:
implications for retention time profiling mechanisms. In Proceedings of the 40th
Annual International Symposium on Computer Architecture (ISCA ’13). ACM, New
York, NY, USA, 60–71.

[48] Sally A. McKee. 2004. Reflections on the Memory Wall. In Proceedings of the 1st
Conference on Computing Frontiers (CF ’04). ACM, New York, NY, USA, 162–167.

[49] Câncio Monteiro, Yasuhiro Takahashi, and Toshikazu Sekine. 2013. Charge-
sharing symmetric adiabatic logic in countermeasure against power analysis
attacks at cell level. Microelectronics Journal 44, 6 (2013), 496–503.

[50] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. . Cher, C. H. A.
Costa, J. Doi, C. Evangelinos, B. M. Fleischer, T. W. Fox, D. S. Gallo, L. Grinberg,
J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson, T. Karkhanis, C. Kim, J. H.
Moreno, J. K. O’Brien, M. Ohmacht, Y. Park, D. A. Prener, B. S. Rosenburg, K. D.
Ryu, O. Sallenave, M. J. Serrano, P. D. M. Siegl, K. Sugavanam, and Z. Sura. 2015.
Active Memory Cube: a processing-in-memory architecture for exascale systems.
IBM Journal of Research and Development 59, 2/3 (March 2015), 17:1–17:14.

[51] M. Oskin, F. T. Chong, and T. Sherwood. 1998. Active Pages: a computation model
for intelligent memory. In Proceedings. 25th Annual International Symposium on
Computer Architecture. 192–203.

[52] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, and K. Yelick. 1997. A case for intelligent RAM. IEEE Micro 17, 2 (March
1997), 34–44.

[53] JL Potter. 1983. Image processing on the massively parallel processor. Computer
16, 1 (Jan 1983), 62–67.

[54] Jan M Rabaey, Anantha P Chandrakasan, and Borivoje Nikolic. 2002. Digital
integrated circuits. Vol. 2. Prentice Hall Englewood Cliffs.

[55] Parthasarathy Ranganathan. 2011. From microprocessors to nanostores: rethink-
ing data-centric systems. Computer 44, 1 (2011), 39–48.

[56] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y.
Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. 2013. RowClone:
fast and energy-efficient in-DRAM bulk data copy and initialization. In 2013
46th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
185–197.

[57] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali
Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu, Phillip B Gibbons, and
Todd C Mowry. 2017. Ambit: in-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 273–287.

[58] Tadashi Shibata and Tadahiro Ohmi. 1992. A functional MOS transistor featuring
gate-level weighted sum and threshold operations. IEEE Transactions on Electron
devices 39, 6 (1992), 1444–1455.

[59] H. S. Stone. 1970. A logic-in-memory computer. IEEE Trans. Comput. C-19, 1 (Jan
1970), 73–78.

[60] K. Tsuchida, T. Inaba, K. Fujita, Y. Ueda, T. Shimizu, Y. Asao, T. Kajiyama, M.
Iwayama, K. Sugiura, S. Ikegawa, T. Kishi, T. Kai, M. Amano, N. Shimomura,
H. Yoda, and Y. Watanabe. 2010. A 64Mb MRAM with clamped-reference and
adequate-reference schemes. In 2010 IEEE International Solid-State Circuits Con-
ference - (ISSCC). 258–259.

[61] L. W. Tucker and G. G. Robertson. 1988. Architecture and applications of the
Connection Machine. Computer 21, 8 (Aug 1988), 26–38.

[62] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: implications
of the obvious. SIGARCH Comput. Archit. News 23, 1 (March 1995), 20–24.

[63] Xilinx. 2011. Virtex-6 FPGA Memory Interface Solutions. https://www.xilinx.
com/support/documentation/ip_documentation/ug406.pdf. Accessed: 2019-08-
30.

[64] Xilinx. 2019. ML605 Hardware User Guide. https://www.xilinx.com/support/
documentation/boards_and_kits/ug534.pdf. Accessed: 2019-08-30.

[65] Kewei Yang and Andreas G Andreou. 1994. A multiple input differential amplifier
based on charge sharing on a floating-gate MOSFET. Analog Integrated Circuits
and Signal Processing 6, 3 (1994), 197–208.

https://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug406.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 DRAM System Organization
	2.2 DRAM commands and timing

	3 Compute in DRAM
	3.1 Basic In-Memory Operations
	3.2 Influence on Refresh Rate
	3.3 Operation Reliability

	4 In-Memory Compute Framework
	4.1 Arbitrary Computations with Memory
	4.2 Implementation Choices
	4.3 Bit-Serial Arithmetic
	4.4 Copy Across Sub-arrays
	4.5 Error Table

	5 Experimental Methodology
	6 Evaluation
	6.1 Proof of Concept
	6.2 Robustness of Operations
	6.3 Effect of Supply Voltage and Temperature

	7 Discussion
	7.1 Computational Throughput
	7.2 Energy Efficiency

	8 Related work & Applications
	9 Conclusion
	Acknowledgments
	References

