
To appear in the proceedings of the 56th IEEE/ACM International Symposium on Microarchitecture

AutoCC: Automatic Discovery of Covert Channels in
Time-Shared Hardware

Marcelo Orenes-Vera
Princeton University
Princeton, NJ, USA

movera@princeton.edu

Hyunsung Yun
Princeton University
Princeton, NJ, USA

Nils Wistoff
ETH Zurich

Zurich, Switzerland

Gernot Heiser
UNSW Sydney

Sydney, Australia

Luca Benini
ETH Zurich

Zurich, Switzerland

David Wentzlaff
Princeton University
Princeton, NJ, USA

Margaret Martonosi
Princeton University
Princeton, NJ, USA

ABSTRACT

Covert channels enable information leakage between secu-
rity domains that should be isolated by observing execution
differences in shared hardware. These channels can appear
in any stateful shared resource, including caches, branch
predictors, and accelerators. Previous works have identified
many vulnerable components, demonstrating and defending
against attacks via reverse engineering. However, this ap-
proach requires much human effort and reasoning. With the
Cambrian explosion of specialized hardware, it is becoming
increasingly difficult to manually identify all vulnerabilities.

To systematically tackle this challenge we propose
AutoCC, a methodology that leverages formal property ver-
ification (FPV) to automatically discover covert channels
in hardware that is shared between processes in a time-
multiplexed fashion. AutoCC operates at the register-transfer
level (RTL) to exhaustively examine any machine state left
by a process after a context switch that creates an execution
difference. Upon finding such a difference, AutoCC provides
a precise execution trace showing how the information was
encoded into the machine state and recovered.

Leveraging our tool to generate new FPV testbenches ap-
plying the AutoCC methodology, we evaluated AutoCC on
four open-source hardware projects, including two RISC-V
cores and two accelerators. Without hand-written code or
directed tests, AutoCC uncovered both known covert chan-
nels (within minutes instead of many hours of test-driven
emulations) and new ones. Although AutoCC is primarily in-
tended to find covert channels, our evaluation has also found
RTL bugs, demonstrating that AutoCC is an effective tool to
improve both the security and reliability of hardware designs.

1. INTRODUCTION
The end of Moore’s law has given rise to increasingly

complex and heterogeneous System-on-Chip (SoC) designs,
which are composed of diverse hardware blocks and intricate
software systems [6, 12, 20, 24, 41, 54, 57, 60, 62]. Ensur-
ing the security of these systems is becoming increasingly
challenging due to the sheer number of hardware modules

Figure 1: A microarchitectural covert channel. The
Trojan in the victim process modifies—via permitted
operations—microarchitectural state so as to encode a
secret. The spy process observes this modification, ei-
ther directly or via a timing difference, to infer the secret.
Sec. 2.1 exemplifies using a covert channel to leak a secret.

and their interactions [5, 47, 49]. In particular, microarchitec-
tural covert channels, which exploit hardware state hidden by
the instruction set architecture (ISA) [64], pose a significant
threat to system security, allowing unauthorized information
flow across security boundaries [35].

Uncovering covert channels in heterogeneous SoCs with
simulation- and emulation-based testing is akin to finding a
needle in a haystack, requiring much engineering effort, time,
and cleverness to create tests that exercise all possible vulner-
abilities. Moreover, upon empirically observing a channel,
it is difficult to find the root cause, as the state that leaks
information is often not directly observable. Verifying the
effectiveness of the RTL fix is also challenging, as the fix
may change the execution that previously exercised the issue.

Formal property verification (FPV) is a promising alterna-
tive to exhaustively and precisely find covert channels without
relying on tests. However, FPV also presents challenges, such
as a steep learning curve, the difficulty of posing the security
problem into FPV to find the desired behavior as property
counterexamples (CEXs), and the exponential growth of FPV
tool runtime with the increase in hardware state size.

To tackle these challenges, we present AutoCC, a novel

1

methodology that frames the problem of finding covert chan-
nels in time-shared hardware (as described in Fig. 1) into a
FPV testbench (FT). We also introduce an automated flow
that generates FTs implementing our methodology by sim-
ply providing the path to an RTL module and a target FPV
tool. This approach enables RTL designers to systematically
explore data leaks between processes that time-multiplex the
usage of a hardware IP block while not needing to reason
about which states may leak. The modularity of our method-
ology makes it suitable for large designs—circumventing the
exponential state growth—and the automatic generation of
FTs makes it more accessible to RTL designers. The security
of a hardware system depends on the security of each com-
ponent; AutoCC enables designers to more efficiently and
effectively identify and address covert channels in heteroge-
neous SoC designs, enhancing overall system security.

Our main contributions are:

• A modular FPV methodology that exhaustively searches
for execution traces within a victim process that lead to
execution differences observable to a spy process.

• An automated procedure to generate an FPV testbench
that applies the above methodology without requiring
any upfront user input or RTL details.

• Uncovering covert channels and hardware bugs in the
mature open-source RISC-V CVA6 core and MAPLE
accelerator.

We evaluate and demonstrate that AutoCC’s methodology:

• Exercises previously-known and new hardware issues in
minutes (as opposed to hours of stress-test simulation).

• Finds the root cause of a CEX with little engineering
effort since the length of the execution trace is minimal.

• Uncovers experimentally viable covert channels that we
can validate in system-level RTL simulation.

• Validates that the RTL fixes to address covert channels
are effective as they eliminate the CEXs.

2. BACKGROUND AND PRIOR WORK
Process isolation is fundamental to system security, and

the primary mechanism by which information is confined
to appropriate domains. A covert channel is an information
flow that uses a mechanism not intended for information
transfer [35]; it enables information leakage across security
boundaries of the operating system (OS) and between do-
mains that should be isolated in violation of the system’s
security policy. For example, a spy process can leverage a
covert channel to extract a secret key from a victim process.

Covert channels can be categorized based on the source of
their data leakage. For example, physical channels rely on
measurable changes in the electromagnetic field or power
draw to extract information [3, 61]. Microarchitectural
channels exploit hardware states invisible to the instruction
set architecture (ISA) to enable unauthorized information
flow [18, 64]. Our paper focuses on the latter; for the rest of
the paper when we say covert channels, we refer specifically
to microarchitectural ones.

2.1 Covert Channels
Covert channels have been demonstrated via the L1-D [25]

and L1-I caches [2], the last-level cache (LLC) [30, 38], the
TLB [22, 27], the branch predictor [2], and the intercon-
nect [48, 66]. The Spectre attack [32] famously demonstrated
the practicality of covert channels by combining them with
speculation to a so-called transient execution attack. Similar
attacks were later presented by exploiting additional covert
channels [51, 59].

Motivating Example: To motivate the threat scenario, let
us assume a setup as shown in Fig. 1. The victim and the
spy are two applications running concurrently on shared hard-
ware. They are (supposedly) isolated by a supervisor using
established mechanism for memory protection. However, this
security boundary can be bypassed using a covert channel, for
example, by a prime-and-probe attack on the L1 data cache:
the spy first primes the data cache by accessing each element
of a data array with the size of the data cache (prime buffer),
filling the L1 data cache with it. During the victim’s execu-
tion time slice, the embedded (malicious or unwitting) Trojan
encodes a secret s into the microarchitectural state, in this
example, by evicting s cache lines with its own data. Finally,
the spy again accesses its entire prime buffer, measuring its
execution time. Doing so, it observes a latency that linearly
depends on the number of cache misses, through which it can
infer the number of cache lines that the Trojan evicted and
thus the victim’s secret s.

Resource Sharing: A microarchitectural covert channel
is possible when the spy and the victim processes share a
resource. Exploitable resources are those holding state that
depends on execution history and that can impact the timing
or behavior of future instructions. This includes the hard-
ware units we mentioned above, but potentially also subtle
ones like arbiters, buffers, and FSMs. Regarding how the
processes share the resource over time, we distinguish be-
tween hardware threads simultaneously sharing a resource
(e.g., a pipeline or a shared cache), and software threads
time-sharing a resource (e.g., time-multiplexing a core or
an accelerator) [19]. Our threat model (detailed in Sec. 3.1)
is based on time-sharing, because (a) it is common in spe-
cialized hardware, and (b) a security domain may prefer to
not simultaneously share capacity- or bandwidth-limited re-
sources (e.g., instruction cache, TLBs, predictors, etc.) with
another one to avoid contention-derived information leakage.

Spy’s Observation Model: For data to leak from the victim
to the spy process, the spy must be able to observe some
fraction of the victim’s execution. Timing channels result
from observable timing differences in the spy’s execution
arising from microarchitectural state that is dependent on the
victim’s secret [19]. Other channels might infer the contents
of these states directly based on the outcomes of executing
unauthorized operations. The latter are frequently regarded
as hardware bugs in security literature, as unauthorized ac-
cess attempts should not leave any traces dependent on the
requested data. As Sec. 3 explains, AutoCC detects differ-
ences at RTL module interfaces, and thus it is applicable to
all microarchitectural channels.

Victim’s Intent: Regarding the intention of the execution
trace within the victim process that enabled the information
leakage, the literature considers side channels as the sub-

2

set of the covert channels when the victim process leaks
inadvertently, while the rest rely on a malicious function—a
Trojan—to use the secret in a specific way that actively leaks
information across the security boundary. Our methodology
is agnostic to intent, as it explores every possible execution
that enables the covert channel.

Protections: The literature in security offers two alterna-
tive protections against timing channels: partitioning of hard-
ware resources and constant-time implementations of cryp-
tographic software [13]. In a simultaneous multi-threading
processor, hardware partitioning spatially partitions shared
resources like caches or prediction tables. In a time-shared
system, shared resources are temporally partitioned via a
flush [64]—this is mechanism we evaluate in this work.
Constant-time programming does not necessarily mean that
the execution time is deterministic, but that it does not de-
pend on the secret data [21]. This programming style avoids
branches and array indexing based on secret data. This is
done so that benevolent software does not inadvertently leak
information (a side channel). Our methodology, by default,
does not restrict the type of instructions that can be executed
since we focus on finding covert channels to be closed in
hardware. However, a user can also constrain the FPV envi-
ronment generated with AutoCC to only explore executions
that are allowed under constant-time programming. Such
an environment would verify that a hardware design does
not leak data while executing constant-time software. Sec. 5
further discusses the tradeoffs of protecting against covert
channels in hardware versus software.

Detection: Information flow security in hardware has been
actively explored since the early 2010s [4, 43, 52, 53, 71].
While these approaches focus on monitoring and controlling
the flow of sensitive data through hardware components to
mitigate security threats, they do so via RTL simulation. As
such, they are as effective as the test cases provided; although
constrained-random testing and fuzzing can be used to gener-
ate a wide range of test cases [11,28,31,34,58], they are not as
exhaustive as formal methods. Subtle timing differences can
be exploited to extract secrets; if targeted efficiently, even a
binary channel can leak a 256-bit AES key in under a second
for a typical context switch frequency of 1kHz [64]. Thus,
formal methods are key to finding every channel.

2.2 Formal Methods for Hw Verification
The first works to ensure RTL correctness through formal

verification utilized model checking with SAT solvers and
binary decision diagrams [7, 42, 50]. For a given design
under test (DUT), a model checker generates a state space of
all possible executions of the DUT, given its inputs and the
specified assumptions. Assumptions constrain the state space
exploration by preventing some behaviors, while assertions
check that properties hold on all the explored paths. FPV
backend tools use a variety of solver engines [10, 65] to
exhaustively search for property violations. Bounded Model
Checking (BMC) is the method of choice for many solver
engines today. In BMC, correctness properties are unwound
to a bounded number of transitions k, reducing the problem
of model checking to an instance of SAT. For AutoCC, this
means proving the property for all k-cycle executions of the
DUT; every successful proof increments k. What does this

mean for completeness? A bounded proof of a property for
k cycles means that the property holds for executions of less
than or equal to k cycles; longer executions may still result
in a property violation. To prove the property for unbounded
executions, k must reach a completeness threshold [55]. A
naive threshold is the number of states in the model; a tighter
one is the length of the shortest path between the two states
furthest apart in the model [15]. In practice, reaching this
completeness threshold is not always possible; the checker
may run out of time or memory, or the threshold itself may
be hard to compute.

FPV has been used for different purposes: RTLCheck ver-
ifies RTL implementations of CPUs against their memory
consistency models [40]; ILA generates a Verilog model of
the design from its functional specification and compares it
against the RTL implementation [26]; and AutoSVA checks
the liveness properties of RTL module interactions [47]. Live-
ness properties specify that “something good will happen,”
e.g. a request is eventually acknowledged, while safety prop-
erties specify that “nothing bad will happen,” e.g., a response
must have had a request. In the context of covert channels,
we are interested in safety properties, to detect data leakage
across processes. Sec. 3 elaborates on how we frame this
detection as a FPV problem.

Formal methods have also been used to detect security
vulnerabilities. InSpectre [23] creates formal models of pro-
cessors to detect Spectre-like attacks that combine specula-
tive execution and a covert channel. UPEC [16] uses FPV
to detect memory leakages via side effects of non-permitted
operations. However, UPEC is limited to uncovering memory
leakages (e.g., through stale microarchitectural state), and
does not consider leakage due to execution time.

To extend the scope of prior work based on formal methods,
AutoCC uses FPV in hardware RTL to automatically detect
microarchitectural covert channels that arise from state depen-
dent on a previous execution impacting the timing of future
instructions. AutoCC complements empirical covert channel
measurement frameworks such as Channel Bench [17], which
show the (non-)existence of specific channels, but not all.

3. THE AUTOCC APPROACH
This section starts by presenting the threat model we tackle

in this paper: time-multiplexed executions of processes on
shared hardware. Second, it describes how we formalize that
threat model into a problem that FPV engines can solve to
automatically discover covert channels between these pro-
cesses. Third, it shows how to apply this methodology to an
RTL project using our automated flow to generate the FPV
testbench and tool bindings. Fourth, it provides a viable path
for applying AutoCC to large projects via modularity. Finally,
it proposes two approaches that leverage AutoCC to aid the
design of temporal protections that prevent covert channels.

3.1 The AutoCC Threat Model
The AutoCC threat model assumes two processes, an at-

tacker and a victim, executing on time-shared hardware and
separated via a context switch enforced by the operating
system (OS). Both processes are untrusted, and the victim
process executes in a controlled environment in which the OS
restricts the clients with which the victim may communicate.

3

1 2 3

321

Figure 2: Overview of the AutoCC methodology. The
victim processes Pα and Pβ are free to take on any legal
execution for an arbitrary number of cycles; the inputs to
both are symbolic. At the end of this phase 1⃝, both arch
and µarch of α and β may differ. The context switch then
occurs, and once it completes at 2⃝ the arch states of both
α and β are the same, but differences in µarch state may
remain. (See Fig. 3 for details of the context switch.) We
assert our arch condition once Pspy begins execution 3⃝.
Holding inputs to both universes equal, AutoCC checks
whether differences in µarch state after the context switch
cause observable differences Pspy execution.

The attacker process possesses no special privileges and
executes in a security domain of its own. In theory, no hard-
ware state should leak data from the victim to the attacker,
since the processes are located in different security domains.
However, an attacker could use a covert channel to illegally
extract information. Its primary asset is a Trojan, some code
in the victim process that leaks the secret data via the channel.

As a tool for hardware designers, AutoCC’s emphasis is
on sensitivity. That is to say, its goal is to expose the full set
of possible covert channels to the designer, placing the final
determination of which ones pose real threats in the hands of
the person who knows the system best. As such, we make no
assumptions about the way the secret data is encoded into the
state of the compromised hardware. The Trojan can be a ma-
licious hidden function of the victim process or innocent code
that leaks data inadvertently as a side effect of a legitimate
operation. Aiming to find and fix covert channels regardless
of the Trojan’s nature allows us to prove stronger correctness
assertions—hardware free of covert channels must also be
free of side channels.

We further note that this threat model is not restricted to
CPUs. Accelerators and other specialized hardware blocks
are often shared between processes in a time-multiplexed
fashion and they are also susceptible to covert channel vul-
nerabilities. The operations available to these specialized
hardware blocks can be considered as their ISA [70]. For the
rest of the paper, DUT will refer to the top-level module that
we are testing, regardless of its level of specialization.

3.2 Formalizing the Threat Model for FPV
Having defined the threat model, we now explain how we

formalize it as a problem for FPV by pushing the FPV tool
closer and closer to modeling the scenario described above.
For our FPV problem, we consider the following definitions:

Definition 1 (State) The state of a DUT is the set of all flip-
flops, registers, and memory cells contained within that hard-
ware module and its instantiated submodules.

The DUT defines our universe of discourse; any RTL out-
side of the DUT is not considered. This distinction is espe-
cially relevant for our discussion on modularity in section 3.4.

Definition 2 (Architectural State) The architectural state
(arch) of a DUT is the subset of the state that is readable via
ISA instructions or defines the program context.

Definition 3 (Microarchitectural State) The microarchi-
tectural state (µarch) is the subset of the state that is not
part of arch (not directly readable via ISA instructions).

A process executing on a DUT will naturally alter the
values of both arch and µarch. Accordingly, the isolation
of these states to the processes to which they belong is a
responsibility shared by both software and hardware. A well-
implemented OS (1) guards the arch that is only accessible
via privileged mode and (2) swaps the values of arch before
another process begins. Well-designed hardware will either
partition or flush any µarch that could leak data from one
process to another. In these terms, AutoCC assumes the
correctness of the OS and checks the isolation of µarch.

Data Leakage: Two conditions must be met for data leak-
age to occur. First, the values of µarch at the beginning of the
spy process are determined from the behavior of the victim
process. That is, based on different values of a piece of data,
there exist at least two executions of the victim process that
lead to different values of µarch. Second, there exist at least
two executions of the same spy program starting from the
same values of arch that lead to different arch, solely because
of that difference in µarch. The goal is to set up an environ-
ment where the FPV tool explores any possible execution of
victim and spy processes where these conditions are met.

AutoCC achieves this by setting up two instances of the
DUT—universes α and β—in the following way (see also
Fig. 2). Both universes start from an identical reset state.
Each universe has its own set of input and output signals.
Because each set of input signals is driven separately by the
FPV tool, each universe can take on any legal execution.
(Sec. 3.4 elaborates on what constitutes a legal execution.)

Fig. 2 also defines three events that occur during the ex-
ecution of the DUT. The first event is the end of the victim
process (and the beginning of the context switch), where α

and β can be in any reachable state after an arbitrary number
of cycles. These states represent all possible executions of the
victim process. Although the start of the context switch may
be staggered, the end of it serves as a synchronization point
between α and β , forcing the two universes (with hitherto
different executions) into convergence. To do so, the context
switch must ensure that upon completion (1) archα and archβ

are identical, and (2) the microarchitectural flush mechanism
has been executed if it exists. With these two conditions met,
α and β are assumed to now both be executing the same
process, namely the spy process that was just switched in.
The inputs for both universes are forced equal to ensure that
any observed divergence is only the result different values of
µarchα and µarchβ . In this post-switch world we assert that
on every cycle, archα and archβ must be equal.

4

What would it mean if this assertion were violated? A
counterexample (CEX) to this assertion means that on some
cycle following the switch, α and β diverged in an observable
way—at the resolution of a cycle—and that this discrepancy
was caused by their differing executions before the switch.
That is to say, there is a mechanism by which some code in the
victim process can affect the execution of the spy process—a
covert channel. Analyzing the CEX and determining the root
of this divergence reveals how the channel is operated; we
showcase how this encoding and observation occurs in Sec. 4.

Observation Model: In our threat model, the spy is a
software program, so for a covert channel to be exploitable,
it must be observable by software. In practical terms, this
implies that the program’s visible state is impacted, which
is why Fig. 2 displays an assertion on arch. However, given
the variety of modern hardware designs, determining which
states belong to arch can be unclear, and manually specifying
all the relevant signals becomes a tedious task. We pose that
as long as there exist ISA instructions that allow a process to
expose any subset of arch to the DUT output interface, we can
assert an equivalent correctness condition just on the DUT
outputs of α and β without reasoning about their internal
signals. Any difference between archα and archβ on cycle
k can, by a sequence of these instructions, be externalized
by the FPV tool as a difference in outputs on cycle k+n for
some bounded n. This allows the AutoCC tool to generate a
FPV testbench (FT) without any user input beyond providing
the path to the DUT. Sec. 3.3 elaborates on how the FT is
generated and how the user might need to manually specify
the subset of arch that is expected to be handled by the OS.

Modeling the OS: Our threat model assumes that the OS is
trusted and correctly implements the context switch. Rather
than reasoning about the sequence of instructions that the
OS uses to switch between processes, we assume that its
goal is achieved by the end of it. This is represented in
Fig. 3 by showing that arch differences between α and β

and the symbolic arch of the spy (y-axis) are resolved by
the end of the context switch. Although α and β are in
different symbolic arch and µarch during the execution of
the victim process, because we consider that the spy process
begins when the arch is the same in both universes, the FPV
tool is only interested in exploring executions of the victim
process that lead to this condition. The victim process and
the OS are only separated for conceptual purposes, as hinted
in Fig. 2 with the dashed line. In practice, there is no bright
line between the execution of the victim process and that of
the OS; we are agnostic to the timing and specific sequence
of instruction that lead α and β to the same arch. This
may result in CEXs that present covert channels that are not
exploitable under a specific OS implementation, but we argue
that it is useful for a hardware designer to be aware of them.
Moreover, in FPV it is best practice to not overconstrain the
model, as this can miss exploring important behavior.

Measuring Context Switch Latency: For all of its advan-
tages, taking the end of the flush as the synchronization point
between α and β admits one blind spot, as it assumes that the
flushes in both universes complete on the same cycle. This
precludes any CEXs that originate from a difference in the
latencies of the flush event itself. If a Trojan can modulate
this latency and a spy can observe the difference, the flush

Figure 3: AutoCC model of the context switch event. In-
stead of enforcing a discrete jump to a sequence of OS
instructions, we simply require that the victim processes
in α and β eventually converge to the same arch (indicated
here by Pα and Pβ converging on the y-axis). This is then
the state of the incoming spy process. Since the microar-
chitectural flush is the last thing that executes before Pspy
begins, this convergence must occur by the start of the
flush. Note that the flush is free to start on different cycles
in α and β ; it is only required they complete together.

latency itself may function as a covert channel. AutoCC can
further verify the DUT against this behavior by taking the
start of the flush as the cycle on which α and β must con-
verge. The flush event may then be considered as part of the
spy process, and our existing assertions will generate a CEX
for any differences between the flush event in α and β .

3.3 FPV Testbench (FT) Generation Flow
To make AutoCC accessible to hardware designers, we

have developed a tool flow that requires minimal effort to set
up. It creates—in under a second—a working FPV testbench
(FT) from the path to the DUT and the choice of target FPV
backend (Sec. 3.3.3). This FT has three components: (1) a
wrapper containing two instances of the DUT, (2) a prop-
erty file that defines the properties to be checked, and (3) a
backend-specific command file to invoke the FPV engines
with the appropriate parameters. We implemented this FT
generation flow in Python, leveraging the AutoSVA frame-
work [1, 47] to parse the DUT interface.

3.3.1 Generating the DUT Wrapper
Based on the RTL we set as the DUT (e.g., core, accelera-

tors, or subset of them, the flow generates a FT in 3 steps.
First, the flow parses the interface signals of the DUT to

create the wrapper’s interface. The input and output signals
of the wrapper are two sets of the DUT signals, each with a
unique suffix (e.g., α and β), except for the signals that we
do not want to replicate, such as the clock and reset signals.

Second, the flow instantiates the DUT twice—as submod-
ules of the wrapper—with different names, i.e., uα and uβ .

Third, it connects each set of the independent, duplicated
interface signals to the corresponding submodule and the
common, non-duplicated signals to both submodules. If users
want other interface signals of the DUT to not be replicated
(e.g., a debug interface), they can specify them via a Verilog

5

comment (//AutoCC Common) above each signal. This is
equivalent to assuming that an input signal is equal through-
out the entire execution, which may be useful to deal with
illegal inputs, as we elaborate in Sec. 3.4. Making a signal
common to α and β helps improve the FPV tool runtime at
the cost of not searching the space state derived from that
signal being different in both universes.

3.3.2 Generating the AutoCC Property file

localparam THRESHOLD = 4;
// eq_cnt counts the number of consecutive cycles the

transfer condition holds since the flush finished
reg [$clog2(THRESHOLD):0] eq_cnt;
wire transfer_cond;
reg spy_mode; //Set when the eq_cnt reaches THRESHOLD
wire spy_starts = transfer_cond && eq_cnt >= THRESHOLD;
wire flush_done = 'x; //Set free by default (anytime)

USER may set the conditions that indicate the
flush has finished for both universes.

always_ff @(posedge clk)
if (reset) begin

spy_mode <= '0;
eq_cnt <= '0;

end else begin
spy_mode <= spy_starts || spy_mode;
eq_cnt <= (flush_done || eq_cnt >0) &&

transfer_cond ? eq_cnt + 1 : '0;
end

// There is an assumption per input signal to the DUT
wire input1_eq = ua.input1 == ub.input1;
assume property (spy_mode |-> input1_eq);
// There is an assertion per output signal of the DUT
wire output1_eq = ua.output1 == ub.output1;
assert property (spy_mode |-> output1_eq);
//If some output signals are grouped by a transaction

with a valid signal , then the assertion for the
payload has the valid signal as a precondition

wire out_transact_valid_eq = ua.out_transact.valid ==
ub.out_transact.valid;

assert property (spy_mode |-> out_transact_valid_eq);
wire out_transact_pld_eq = !ua.out_transact.valid ||

ua.out_transact.payload ==ub.out_transact.payload;
assert property (spy_mode |-> out_transact_pld_eq);

wire architectural_state_eq = 1 ' b1; // The USER
includes conditions here based on the
architectural state of the DUT

// Conditions to be met before starting spy_mode
assign transfer_cond = architectural_state_eq &&

input_signal_eq && output_signal_eq &&
out_transact_valid_eq && out_transact_pld_eq;

Listing 1: Property file created generated by the AutoCC
tool. It uses the signal that indicates that µarch flush has
finished in both universes, to start the equality condition
that defines the transfer period. After the transfer period
is done, the spy process begins, i,e, inputs are assumed
equal in both universes, and outputs are checked.

Listing 1 shows the template of the property file gener-
ated by AutoCC. Users are not required to provide a priori
information about internals of the DUT, as the properties gen-
erated solely use interface signals. Properties are written in
SystemVerilog Assertions language (SVA) [29]. Assumptions
are generated for DUT inputs, and assertions for outputs.

Transactions: When a group of signals is governed by
a valid signal we call it a transaction. We use this valid
signal as a precondition for the properties reasoning about
the payload of the transaction. This means that we do not
check whether the payload of an outgoing transaction (from
the DUT perspective) changes values while the transaction
is not valid. However, if the RTL module to which the DUT

is outputting wrongly makes use of an invalid payload, this
would be detected by AutoCC when applied to this incorrect
module since the input payloads are only assumed equal when
the input transaction is valid. This careful management of
interface transactions is crucial when verifying a large design
via modularity (Sec. 3.4). We reuse AutoSVA’s approach to
automatically identify transactions [47].

Defining the Architecture and Flush Conditions: By
default, AutoCC does not identify the µarch flush event or the
set of arch signals. Users can modify these signals depending
on the DUT to determine when a flush is considered complete
and which state elements belong to arch. As we showcase
in the evaluation section, we recommend adding states to the
architectural_state_eq condition as CEXs are found to
avoid overconstraining in advance. However, states that are
clearly architectural because the OS is responsible to manage
them, e.g., the register file, may be added upfront.

Flush Completion: The flush event can be tricky to nail
down as some DUTs do not have a well-defined signal for
when the flush completes, and some do not have a flush op-
eration at all. For instance, certain accelerators are designed
under the assumption that when a new process begins utiliz-
ing the accelerator, there are no ongoing operations within
its pipeline. That is to say, each stage of the pipeline must
be idle when a new process begins; for these DUTs, flush
completion can simply be defined as an idle pipeline.

Transfer Period: This concept is introduced to ease the
definition of the flush completion on DUTs that have neither
a flush nor an idle signal. The condition defining the transfer
period is that for some cycles after the flush has finished, both
arch and the interface signals are identical for α and β , giving
time for the pipeline stages in both universes to converge.
As shown in Listing 1, the length of this transfer period
is configurable via the THRESHOLD parameter. In theory, a
transfer period of n cycles would eliminate CEXs that could
only exercise within the first n cycles of the new process.
In practice, as long as n remains smaller than the length
of the OS operations between the flush completion and the
transference of control to the spy process, these CEXs would
not correspond to exploitable covert channels. As a heuristic,
the length of the transfer period may be set to the length of
the longest path through the pipeline.

Spy Mode: The properties in Listing 1 only apply when the
spy process is executing and the transfer period has elapsed
(spy_mode is asserted). Until then, the inputs to both uni-
verses are free to be different and the outputs are not checked.

3.3.3 AutoCC’s FPV Backend Support
The adoption of formal methods is frequently hindered by

the access to FPV engines, as the need of training to effec-
tively use them. To ease their usage, our tool also generates
the backend-specific commands and binding files required
to use FPV engines based on their documentation [10, 65].
We have tested AutoCC with two different backends: Jasper-
Gold [9] and SBY [65, 67]. Once the properties and bind-
ings are generated, our tool invokes the backend to start
the property-checking process. Our methodology only uses
single-cycle properties, which are efficient for FPV engines
to verify and are supported by the open-source part of SBY.
Thus, our tool is potentially amenable to an end-to-end open-
source tool flow via SBY when applied to Verilog projects.

6

3.4 Reducing the State Space via Modularity
Covert channels can potentially be exploited from any state

that a victim touches. Thus, AutoCC should be applied to
all the RTL modules involved in that process. Proving the
assertions of Listing 1—or achieving a deep-enough bounded
proof—is often infeasible for SoC designs of realistic size.

The space state exploration in FPV—and thus backend
tool runtime—grows exponentially with the size of the RTL
and the depth of the search (time in cycles). As a baseline
mitigation, we adopt the standard technique of minimizing
the size of modules that are parameterized, such as TLBs,
caches, etc [55]. Provided that the downsized module is
still able to exercise all the relevant features, this technique
would not affect the coverage of evaluation. However, this
technique is often not enough to achieve a bounded proof that
is sufficiently deep to provide confidence in the correctness of
the design. To that end, we adopt two additional techniques:
blackboxing and modularity. (Since blackboxing is form of
modularity, we discuss them together.)

The implications of both techniques are very similar, but
they differ in the location of the abstracted module. Black-
boxing means that a submodule of the DUT is abstracted
away from the verification engine, while modularity means
that we create a new FT where the DUT is a submodule of the
former top module. In practice, blackboxing can be thought
of as if the submodule was moved outside the DUT, while the
wires that connect it to the DUT are left intact. These wires
now become part of the DUT interface and are subject to the
same constraints as the other DUT inputs and outputs, i.e.,
upon entering the spy mode, the wires that output the DUT
(and input the blackboxed module) are checked to be equal
in α and β , while the inputs to the DUT are assumed equal.

To the verification engine, the internals of a blackboxed
module do not exist; it does not follow any state evolution. A
module should only be blackboxed, then, if the user does not
care about any leaks originating from within it. (This could
be because the OS is assumed to flush the module’s state, or
the module has already been verified.)

Advantages: First, since the DUT contains less state, the
complexity of the verification problem is reduced exponen-
tially. Second, the depth of the exploration required to exer-
cise the relevant features of the DUT is reduced, since the
FPV tool is driving the inputs of the DUT directly.

Disadvantages: First, the CEXs that are found are less
informative, since we do not know how the inputs of the DUT
were produced. For the case of blackboxing, this refers to the
outputs of the blackboxed module, which are driving the rest
of the logic still within the DUT. Second, the CEXs are more
likely to be spurious, since inputs to the DUT may be illegal.

Definition 4 (Illegal Input Sequence) An input sequence to
the DUT is considered illegal if is unreachable when the DUT
is instantiated within the full SoC (driving the DUT inputs).

Based on the above definition, the user could create as-
sumptions to limit the inputs to legal values, e.g., do not
receive a memory response if a request was not sent. A hard-
ware designer may decide to not include these assumptions
in its RTL module if the rest of the SoC is untrusted (e.g.,
resulting from integrating third-party IP). Alternatively, one
may add individual assumptions to the FT to limit the inputs

Algorithm 1: Incremental Flush Signal Construction
Flush← /0;
result← FPV(DUT, Flush, AutoCC_FT);
while (result == CEX) do

state← FindCause(result);
Insert(Flush, state);
result← FPV(DUT, Flush, AutoCC_FT);

Algorithm 2: Decremental Flush Signal Construction
Candidates⊆ µarch;
Flush← µarch;
for (state in Candidates) do

Remove(Flush, state);
result← FPV(DUT, Flush, AutoCC_FT);
if (result != Proof) then

Insert(Flush, state);

to legal values. To ease the modeling of DUT’s outgoing
transactions, our tool flow can also generate that from Au-
toSVA annotations. However, we pose that in FPV it is good
practice to add assumptions and modeling upon encountering
spurious CEXs, as it is a good way to learn about the design
and avoids overconstraining the verification process.

SoC-level Verification: In order to apply AutoCC at the
SoC level, we recommend first creating FTs for RTL modules
with the simplest interfaces, e.g., modules that are connected
to the network-on-chip (NoC). This makes it much easier
to deal with illegal inputs, as the NoC protocol is usually
well-defined. Our properties in Listing 1 are designed to be
modular, so RTL modules can be independently verified to
produce a deterministic output given an input sequence, re-
gardless of their µarch. However, modularity results in more
effort, not because of creating the FTs (which is automated in
AutoCC), but because the DUT inputs are arbitrarily driven
by the FPV tool, making the CEXs more prone to be spurious.

3.5 AutoCC During RTL Development
The properties in Listing 1 are expressed using interface

signals, making them implementation-independent. This,
along with their modular nature, allows hardware designers
to utilize AutoCC properties for test driven development
(TDD), where CEXs help to refine the design [8, 56].

TDD is particularly useful to design the µarch flush mech-
anism. The overall flush mechanism would be correct if
every module involved in the victim process is effectively
flushing exploitable µarch, and the orchestration of the flush
signals across modules is properly implemented. We propose
two methods that use AutoCC to identify the minimal set of
µarch states that needs to be flushed to provide full temporal
partitioning (i.e., no observable differences).

Algorithm 1 incrementally constructs the flush signal by
inserting states that cause a CEX to AutoCC properties when
not flushed. Algorithm 2 starts with the assumptions that
the entire µarch is being flushed and AutoCC properties
achieve a proof. Then it iteratively takes a state from the set
of candidates and removes it from the flush signal as long as

7

proof is still achieved. The candidate set is a subset of flush
as there is no incentive to remove a state flush if it has no
impact on performance. Both approaches assume that FPV
returns in a finite amount of time, and the user is responsible
for determining when a bounded proof yields confidence.

4. EVALUATION AND RESULTS
This section presents our evaluation of AutoCC on four

open-source projects: 32-bit RISC-V Vscale core [39];
application-class 64-bit CVA6 core [44,68]; MAPLE memory
access engine [45, 46], and an accelerator for AES encryp-
tion [39]. We chose these projects because they represent a
diverse set of designs in terms of complexity and pipeline
depth. Table 1 lists the valuable CEXs we found. We consider
a CEX valuable if it uncovers (a) a behavioral difference in
the execution of a spy process based on the state left by a
victim process, or (b) unexpected or unintended behavior in
the RTL based on legal execution. Alternatively, a spurious
CEX is caused by an illegal input sequence (see Definition 3).

Description Depth Time

V5. Interrupt in the WB stage stalls pipeline 9 < 10 min.

C1. Leaks invalid I-Cache data to the next PC 76 < 30 min.

C2. Wrong transition in the FSM of the PTW 80 < 6h

C3. Valid D$ line after flush caused by PTW 80 < 6h

M2. Leak whether the TLB was disabled 21 < 30 min.

M3. Leak the value of a configuration register 23 < 3h

A1. Request in the pipeline during the switch 42 < 1 min.

Table 1: Description, DUT execution depth and FPV tool
runtime (in minutes and hours) of the CEXs found in
Vscale (V), CVA6 (C), MAPLE (M), and AES (A) that
uncover hardware bugs or possible covert channels.

Description Depth Time

V1. Jump to address read from the reg. file 6 <10 sec.

V2. Jump to address read from CSR 6 < 10 sec.

V3. PC different throughout the pipeline 7 < 10 sec.

V4. Decode Stage registers different 7 < 10 sec.

V5. Interrupt in the WB stage stalls pipeline 9 < 100 sec.

Table 2: Description, depth and FPV tool runtime (in
seconds) of every CEX found in our experiments with
Vscale starting from the default AutoCC FT, in order.

Table 1 also shows the depth of the CEX (length of the
execution trace) and the runtime of the FPV tool. Although
we have validated that the AutoCC methodology works with
both SBY and JasperGold, we chose to perform evaluations
with the latter due to familiarity with its GUI and because we
are also evaluating SystemVerilog projects.

During the rest of the section, we walk the reader through
the steps of applying AutoCC to the RTL projects listed above,
including generating the FTs, refining the architectural state
signal upon CEXs, and finding the CEXs indicated in Table 1.
In the case of CVA6 and MAPLE, we (a) found hardware

bugs and exploitable covert channels and reproduced a leak in
system-level RTL simulation, (b) fixed these bugs and leaks
in RTL and re-ran AutoCC to confirm that the CEXs were no
longer found, and (c) communicated with the maintainers of
these projects, and most of the fixes have now been merged.

4.1 The 32-bit Vscale RISC-V core
Step-by-step use-case. Because Vscale is the first DUT

presented, we will walk the reader (a potential user) through
how we applied the AutoCC methodology to it. First, we
create the FT with the following command: python au-
tocc.py -f vscale_core.v. Second, we run the gener-
ated FT using JasperGold: jg ft_vscale_core/FPV.tcl.
Note that this first run uses the default values for the flush
signal and the architectural state signal (see Listing 1). The
CEXs shown in Table 2 are the result of refining the definition
of the architectural state.

V1. The first CEX we observed was caused by a jump to an
address in a register. Recall that the default assertions in the
FT only check whether the output interfaces of the DUT are
equal. Thus, the formal engine searches for an execution path
to expose different internal states at the output interfaces. We
refined that CEX by adding a condition to architectural_-
state_eq to check that pipeline.regfile.data is equal
in both instances of the Vscale core. We could have added
this condition from the beginning, but we chose to add them
as we were finding CEXs for three reasons: (1) because we
had not looked inside the core’s internal state before, and so
the CEX helped us find the path to each signal name; (2) to
validate that the methodology can find covert channels based
on an unflushed state; and (3) because it is good practice to
start with the simplest precondition possible to make sure we
do not overconstrain the state exploration.

V2. The second CEX was caused by a jump to a register
previously fetched from the CSR module. The OS is respon-
sible for protecting and managing the CSR registers, so these
should be considered part of the architectural state. Since
there are many registers inside the CSR module, it was more
convenient to black box the module and follow the procedure
described in Sec. 3.4.

V3. The third CEX was caused by the PC being different
in both universes, causing the next instruction fetch to have
a different address. We refine this CEX by adding the PC
registers along the pipeline to the architectural state.

V4 & V5. The fourth and fifth CEXs are caused by the fact
that the Vscale core does not have a temporal fence like the
version we used for CVA6 [44]. Particularly, our fifth CEX
of Table 2 showed a case where an interrupting instruction
in the write-back stage of α—from the execution before the
context switch—was causing stalls in the fetch stage of the
pipeline for the spy process. However, since the OS code
that manages the context switch has more instructions than
pipeline stages of Vscale, it seems reasonable to consider that
all instructions inside the pipeline should be equal in both
universes when the spy process is about to start. For this
evaluation, we assume a trusted and correct OS. Nonetheless,
if an AutoCC user prefers not to assume that, this CEX could
constitute a covert channel in that threat model.

Bounded proof. After refining the last CEX, the FV en-
gine kept searching until it timed out after our time limit of

8

24 hours. At that moment, it had reached a bounded proof of
depth 21. Since Vscale does not have caches or other deep
units, and the previous CEX had a depth of 9, we believe it
would not find any more CEXs even if the tool ran longer.

4.2 The 64-bit CVA6 RISC-V core
CVA6 is a mature application-class RISC-V core, fully

implementing I, M, A, F, D, and C extensions (ISA v2.3)
and three privilege levels (M, S, U), that has been taped out
multiple times into silicon [14, 69]. CVA6 offers several
configurations, including 32-bit and 64-bit variants.

Configurations. We used the 64-bit one with all the exten-
sions, defined by their cv64a6_imafdc_sv39_config_pkg
configuration file. However, we shrank the size of caches (16
lines), TLB (4 lines), and branch predictor table (16 entries)
to reduce the state size while still exercising their function-
ality. Leveraging the modularity of AutoCC, we disabled
the floating-point unit (FPU) to lighten the FV process, as
this IP block could be evaluated separately. There are three
adaptations of CVA6 that implement different versions of
the fence.t instruction—a µarch flush mechanism—with
increasing levels of flush exhaustiveness [63].

Validating previously-found covert-channels. Our work
began with the second implementation—full flush—which
clears the caches, TLBs, branch predictors, and other states
in smaller units, such as arbiters. We set the f lush_done
condition as the fence.t has completed in both universes,
i.e., when the write-back data cache (D$) has invalidated its
lines. One of the first CEXs we found (after we added the
PC, register file, and CSR into the arch signal) was caused
by executions where α had an outstanding AXI (Advanced
eXtensible Interface) request going into the flush while β did
not. Since the arrival of the flush signal kills all outstand-
ing AXI transactions, α’s instruction cache (I$), which was
making the request, transitioned to a KILL_MISS state while
β ’s remained in IDLE. This divergence of µarch can lead
to an observable timing difference after the flush event, for
instance, by issuing another cache request. A natural solution
is to stipulate that the flush must first wait for all outstand-
ing AXI requests to complete. We found another cause after
assuming that all AXI requests are satisfied before the flush
event, where the page table walker (PTW) takes longer to
flush in α because it had an active memory request to the
D$. These CEXs confirm and extend the findings about full
flush fence.t made in [63]. The observation that subtle,
hard-to-find components may produce a covert channel if not
cleared systematically was their primary motivation for the
third implementation of CVA6’s µarch flush: microreset.

Evaluating the safest configuration. Unlike the full flush,
microreset targets the entire µarch rather than attempting
to identify a subset of vulnerabilities (only arch is left un-
flushed). Microreset also enforces the fence.t latency be
independent of any previous execution, padding it to the
worst-case: the latency of a full D$ write-back. Flushing
all µarch and padding to a constant latency is the most thor-
ough temporal partition that a designer can do against covert
channels in hardware, so we were not expecting to find any
relevant CEXs; however, we found three, presented below.

C1. First, we found a CEX where an I$ fetch results in
an exception in both α and β . Since the exception is a valid

response for this transaction, icache_dreq_i.valid is as-
serted even though the fetch did not hit the I$. In the frontend,
CVA6 loads icache_data with whatever data payload it re-
ceives from the I$, as long as the response is valid. This
payload is an input into the instruction realigner; the crux
of the CEX is that the realigner sets its valid signal—for its
output back to the pipeline—based on one bit of this payload
without knowing that the payload did not come from a valid
I$ line. The difference in the output of the realigner then
results in a PC difference in α and β . We tentatively fixed
this to continue exploring by zeroing out the data payload if
we do not hit in the I$.

C2. Second, we faced a CEX caused by an invalid FSM
transition in the PTW. This CEX begins with a TLB miss in
both α and β , resulting in both universes going on a page
table walk; the flush signal from fence.t arrives while the
walk is ongoing. The FSM logic for the PTW dictates that if
the PTW looks up a page table entry (PTE) when flush goes
high, it should wait for a response before going to IDLE. (The
intended transition is PTE_LOOKUP to WAIT_RVALID, then
WAIT_RVALID to IDLE on receiving a valid response.) This
is exactly what α does. However, once β is in WAIT_RVALID,
it takes an exception, causing flush to go high again. As
a result, β ’s FSM transitions to IDLE on the next cycle, ter-
minating the walk before it gets a response. We reached
out to the CVA6 maintainers to discuss this corner case and
proposed a fix, which has been merged upstream. 1 This
CEX showcases that AutoCC not only finds potential covert
channels but also errors in the design.

C3. Third, we hit a CEX where α observes a chain of
events involving the I$, TLB, PTW, and D$. Initially, the I$
experiences a miss, whose memory translation also results
in a TLB miss. Subsequently, the PTW starts fetching PTEs,
which results in a D$ request, right when the flush signal
arrives. Although the TLB and PTW eventually get flushed,
the D$ ends up with a valid line after the flush completes. This
CEX shows that a sequence of events initiated before the flush
lead to an effect observed after the flush ends, constituting
a potential covert channel. Based on this CEX, we find that
draining D$ transactions after writing back the D$ and before
clearing the design’s flip-flops is insufficient; D$ transactions
need to be drained before and after the write-back. We have
proposed a corresponding fix for microreset. 2

4.3 The MAPLE Memory-Access Engine
MAPLE is an accelerator for fetching memory patterns

that supports fetching single array elements, array ranges,
and indirect memory accesses. It also contains a memory-
management unit (MMU) for virtual memory translation. In
addition to load and consume operations, the API offered by
MAPLE exposes several registers to configure the hardware
queues and the MMU. Particularly, the API offers a init
operation to allocate a MAPLE instance (by mapping its
memory-mapped configuration registers into virtual memory),
a close operation to de-allocate the instance, and a cleanup
operation to invalidate these configurations and flush the TLB
between processes. The cleanup operation is performed as
a first step of the initialization process.
1https://github.com/openhwgroup/cva6/pull/1184
2https://github.com/pulp-platform/cva6/commit/ae79ec5

9

Flush mechanism. We used the FSM that controls the
invalidation process to set up the flush signal—when the in-
validation state transitions to idle. Although MAPLE queues
could be considered architecturally visible, these are flushed
by the cleanup operation, so we did not add them in the
architectural state condition.

M1. The first CEX we found was caused by several other
requests being in the NoC protocol’s output buffer in α when
the flush signal was asserted. Although this could potentially
yield a covert channel under special timing conditions (an
old request being backpressured from the NoC), we chose
to continue exploring CEXs by assuming that this buffer is
empty during the context switch.

M2. The second CEX found in 28 seconds at depth 14,
was caused by the TLB in α being disabled while the TLB
in β was enabled. The TLB is enabled by default at reset,
but MAPLE’s API allows disabling it. We found from the
CEX trace that the flip-flop that indicates whether the TLB
is enabled is not flushed during the context switch. This
flip-flop could be used as a binary covert channel, provided
that the Trojan could disable the TLB and the spy observe
a page fault. We tentatively fixed this in the RTL by setting
this flip-flop during the flush.

M3. The third CEX, found after 158 minutes at depth 23,
was caused by another register not being flushed. This one
is the base address of the array for which subsequent data
fetches can be offloaded to MAPLE by indicating an array
index. To better clarify this covert channel and how to exploit
it in practice, we recreate a data leak with a test written in C.
void leak(int iteration){ // Trojan inside victim 's

process
int qid = dec_init ();
uint16 leak_byte = (secret >> (iteration *8)) & 0
x00FF;
uint16 offset = leak_byte << 2; // 4-byte aligned
dec_set_array_base(qid , VADDR + offset);
dec_close(qid);

}
// The spy process has an 256- element array allocated

using mmap() to start at VADDR. The array
contains consecutive elements from 0 to 255.

void observe(int iteration){ // Inside Spy Process
int qid = dec_init ();
dec_open_producer(qid);
dec_open_consumer(qid);
// Tells MAPLE to fetch the 0th array element
starting from the configured base address , i.e,
array[leak_byte]
dec_load_word_async(qid ,0);
// Consume array value from MAPLE 's queue ,
uint32 spy_byte = dec_consume_word(qid);
recovered = recovered | (spy_byte << (iteration
*8));
dec_close(qid);

}

Listing 2: Code that lets a spy process recover the secret
that a Trojan is actively leaking. MAPLE has a function
(dec_set_array_base) that sets the base address of an
array so that subsequent loads from it are offloaded to
MAPLE by simply indicating the array index to load
(dec_load_word_async). Since AutoCC found that this
base address is not properly flushed, we can use it to leak
the secret. The secret is leaked a byte at a time, by using it
as an offset to set the base address of the array. Since the
spy has allocated an array where array[index]==index,
this offset is inferred from the loaded value.

Exploiting M3 at system level. Listing 2 shows the leak
function that allows a Trojan to encode a byte of the secret
per iteration, and the observe function that allows the spy
to recover it. To evaluate this test, we first built the RTL
simulation environment of MAPLE integrated with the Open-
Piton SoC [5] following the tutorial in the MAPLE repos-
itory. Then, we performed the test bare-metal using VCS
O-2018.09-SP2. It took about a minute for VCS to simulate
the test program on the OpenPiton SoC with MAPLE, where
the spy recovered a 128-bit secret over 16 iterations in a total
of 112,000 clock cycles.

Closing M2 and M3 channels. We communicated our
findings to the MAPLE maintainers, who already made two
patches to the open-source RTL to close these channels. For
fabricated chips that include MAPLE, these channels could
be closed in software by writing these registers explicitly to
the reset value during the invalidation process.

4.4 An AES Accelerator
The AES accelerator we evaluated takes a 128-bit plain

text and a 128-bit key as input and produces a 128-bit cipher
text as output. It is a pipelined accelerator with 40 stages. We
applied our methodology by following the same steps as in
the previous section. We first ran the default FT generated by
AutoCC, without specifying the flush signal. This accelerator
also does not contain any architecturally visible state but
rather follows a request-response protocol.

A1. We found a CEX at depth 42 in a few seconds; universe
α contained several ongoing requests, while β had none.
Since the flush signal (set free) appeared while the accelerator
pipeline in α was processing requests, a timing difference
appears when α eventually responds and β does not.

Using accelerators concurrently. The design of this AES
accelerator assumes that it will only be used by one process at
a time, as it does not offer any invalidate or flush signals. This
would work well in a scenario where the accelerator cannot
be used by another process until all the requests have been
responded to. This is a reasonable assumption in the context
of a well-programmed allocation of system resources, hence,
we refined this CEX by defining the flush signal as both
universes having no ongoing requests. Once this condition
was added, the tool found full proof in 5 hours.

Heterogeneous SoCs may lead to subtle vulnerabilities.
We would like to point out that in the era of heterogeneous
hardware, system designers have to be very careful when in-
tegrating third-party IP blocks, as they might not be aware of
the assumption made by other designers. Otherwise, integrat-
ing a block similar to this AES accelerator (without hardware
invalidation mechanism) in a system that does not assume the
OS to shield the allocation of hardware resources (waiting
for all ongoing requests) may create a covert channel.

5. DISCUSSION: HW/SW PROTECTIONS
We understand that security is not the task of hardware

alone. Designers often have to make trade-offs between per-
formance and security; by identifying covert channels, our
methodology can help them make informed decisions by
knowing which hardware blocks, features or optimizations
may cause data leakage. Our approach also provides concise
traces of the execution that led to a particular state and how

10

that state led to an observable difference in the spy process.
With this information, a hardware vendor can better decide
whether to fix the covert channel or issue warnings to pro-
grammers of cryptographic libraries, so that they avoid using
them if that goes against their security goals.

For instance, if a hardware-based division operation is sus-
ceptible to a covert channel and fixing it would significantly
slow down the operation for non-security-critical applica-
tions, programmers prioritizing security should avoid using
divisions on sensitive data. However, if addressing the chan-
nel in hardware has minimal performance impact, a simple
flush during context switching can prevent the covert channel,
as long as the flush process does not create another one.

The Cost of Flushing Microarchitectural State: Although
analyzing the performance impact of flushing µarch is out
of the scope of this paper, we can make some observations.
Flushing µarch may affect performance in two ways: (1) the
time it takes to flush the state, and (2) the time it takes to
restore the state after the flush. The first one is impacted by
the unit that takes the longest to flush; much of the state can be
flushed in a single cycle, but some units may take longer (e.g.,
write-back caches). Regarding the second one, the concern is
the performance lost because the state is not available after the
context switch. For example, more cache misses may occur
because the cache is flushed, or the branch predictor might
need to relearn the branch history. Prior work found that this
impact mostly depends on the length of the period between
context switches and the size of these structures [63]. We also
expect that since on-core caches are small—typically much
smaller than the working set of a program [17]—chances
are that the cache lines that were interesting for the second
process were already replaced anyways, and so there is no
performance impact in this regard. We regard the problem
of preventing covert channels as a challenge in hardware-
software co-design. Hardware must provide the required
means to partition shared resources, such that an OS can
use these as necessary when reallocating those resources
from one security domain to another. To that end, AutoCC
assists the design and verification of temporal partitioning
mechanisms in RTL modules.

6. FURTHER RELATED WORK
Information flow tracking (IFT) monitors the flow of sen-

sitive data through hardware components via RTL simula-
tion [4, 43, 52, 53]. Like AutoCC, IFT techniques provide a
precise trace of the leakage; however, they rely on input tests
and user-provided security properties to operate. Prior works
in IFT are in part orthogonal to AutoCC, as they focus on
system-level evaluation, while AutoCC formally verifies SoC
components—during or at the end of the design phase.

Other works in the area of information flow security pro-
pose new hardware description languages that integrate as-
pects of type systems to prevent illegal information flows.
Caisson [37] is one such example that statically analyzes
designs written in its language to guarantee noninterference.
Sapper [36] offers the same static guarantee by automati-
cally inserting runtime checks into a Verilog design. SecVer-
ilog [71] extends Verilog with a label-based type system to
allow for dynamic labels that depend on values at runtime.
All of these approaches must be applied end-to-end on the

entire design and require significant modification and annota-
tion of existing RTL. This in turn requires reasoning about
design internals and their security properties.

Simarel [33], like AutoCC, uses bounded model checking
to verify relational invariants between core executions. The
emphasis is on using the relational invariants as inductive
invariants to prove information isolation. However, Simarel
reasons generally about flows between levels in a security
lattice; no testing occurs against a formalized context switch.

Moreover, while prior work is effective at tracking hard-
ware state being read and propagated, they do not directly
reason about how timing in the program execution may also
leak information.

7. CONCLUSION
Our research introduces an FPV methodology that, given

an RTL module, exhaustively searches for execution traces
within a victim process, which can lead to execution dif-
ferences observable by a supposedly isolated spy process.
We also developed an automated procedure to generate FPV
testbenches implementing this methodology, eliminating the
need for upfront user input or RTL details. We demonstrated
the effectiveness and efficiency of AutoCC’s methodology by
applying it to four used open-source projects. Particularly, we
found that AutoCC: (1) exercises previously-known issues
within minutes, compared to lengthy stress-test simulations;
(2) finds the root cause of a CEX with minimal engineering
effort due to the short length of the execution trace; (3) ex-
poses new hardware bugs and covert channels in the mature
open-source RISC-V CVA6 core and the MAPLE accelera-
tor; (4) uncovers experimentally-viable covert channels as we
validated one via system-level RTL simulation; (5) validates
that the RTL fixes to close covert channels are effective.

AutoCC holds much value for hardware designers, em-
powering them to perform systematic searches for covert
channels in their RTL modules during the development stage.
This paper also presented a test-driven approach to assist in
designing hardware modules that require temporal isolation,
i.e., flushing the µarch state between processes. AutoCC is
open-source, available at github.com/morenes/AutoCC.

Acknowledgements

This material is based upon work supported by (while was
serving at) the National Science Foundation (NSF), and based
on research sponsored by the Air Force Research Laboratory
(AFRL) and Defense Advanced Research Projects Agency
(DARPA) under agreement FA8650-18-2-7862. 3 The work
of Wistoff and Benini has been supported in part by ‘Frac-
tal’ project under grant agreement No 877056 that receives
funding from ECSEL-JU as part of the EU Horizon 2020 re-
search and innovation programme, and in part by the ETH4D
Humanitarian Action Challenges Application on “Secure In-
frastructure for Humanitarian Organizations”.
3The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed
or implied, of NSF, AFRL and DARPA or the U.S. Government.

11

APPENDIX

A. ARTIFACT APPENDIX

A.1 Abstract
This artifact applies the AutoCC methodology to each of

the hardware components evaluated in this paper: the 32-bit
RISC-V Vscale core, the 64-bit application-class RISC-V
CVA6 core, the MAPLE memory-access engine, and the
128-bit AES encryption accelerator. The AutoCC methodol-
ogy employs formal property verification (FPV) to exhaus-
tively examine the state of hardware components to determine
whether it may expose a covert channel,i.e., FPV engines
would trigger counterexamples (CEXs) to the AutoCC as-
sertions if there is any hardware state (left unflushed after a
context switch) that leads to an execution difference observ-
able from the output of the component.

This artifact evaluation performs three types of tasks: (a)
given an RTL component, AutoCC generates a FPV Test-
bench (FT); (b) feeding an FT into JasperGold to obtain
CEXs to the properties generated by AutoCC; (c) reproduc-
ing a covert channel that a CEX uncovered at system-level
simulation (not as a standalone hardware component).

A.2 Artifact check-list (meta-information)

• Data set: The four RTL components we evaluate in
this paper serve as the data set. This encompasses the
open-source projects of Vscale, CVA6, and MAPLE, and
a 128-bit AES accelerator. They can be accessed here:
github.com/LGT MCU/vscale.git, github.com/morenes/cva6.git,
github.com/PrincetonUniversity/maple.git,
github.com/morenes/aes.git.

• Run-time environment: Running the FTs generated by AutoCC
requires Cadence’s JasperGold tool (JG). Reproducing the covert
channel found with AutoCC requires Synopsys’ VCS simulator.

• Experiments: There are four use cases, described in Section A.5,
which are independent and can be evaluated in parallel.

• Output: Given the Vscale core as input, AutoCC will generate
an FT for it. This and the FTs of the other components (provided
in the AutoCC github) are fed into JG to obtain some of the CEXs
shown in Tables 2 and 1. The system-level RTL simulation of Open-
Piton+MAPLE would output the 32-bit word being transmitted using
the covert-channel uncovered in this paper using AutoCC.

• How much disk space required (approximately)?: 2.5GB.

• How much time is needed to prepare workflow (approximately)?:
Less than 1h.

• How much time is needed to complete experiments (approxi-
mately)?: The longest runs take 6h. The use cases are independent
and can be performed in parallel in four terminals. Note that de-
pending on the server that JG is running this may affect execution
times.

A.3 Description

A.3.1 How to access
This artifact can be accessed from GitHub

github.com/morenes/AutoCC. The repository contains a
README with detailed instructions for installing AutoCC
and reproducing our results.

A.3.2 Hardware dependencies
This artifact does not have any specific hardware depen-

dencies. However, we recommend running on a machine with
at least 16 cores to see similar running times as the ones we
report in the paper.

A.3.3 Software dependencies
In addition to the source code of AutoCC and the projects

to be tested, this artifact evaluation requires:

• Cadence’s JasperGold (JG), to obtain the CEXs to Au-
toCC assertions. We have performed our evaluation
with version 2021.03, and we have checked that it also
works with version 2019.12. Other versions would
probably work too.

• Synopsys’ VCS Simulator, to reproduce the covert chan-
nel on MAPLE at system-level.

A.4 Installation
Clone the repository for AutoCC:

git clone
https://github.com/morenes/AutoCC.git;↪→

cd AutoCC;
export AUTOCC_ROOT=$PWD;

Point to the JG binary:

which jg;
alias jg='<LIC_PATH>/jasper_2021.03/bin/jg';

Or the version that you are using↪→

A.5 Experiment workflow and expected re-
sults

A.5.1 Vscale: Generating FT and fixing constraints
Clone the Vscale repo and fix a combinational loop in the

original RTL that prevents JG from running:

cd $AUTOCC_ROOT
git clone

https://github.com/LGTMCU/vscale.git↪→

./fixes/fix_combo_loop_vscale_rtl.sh

Generate the Vscale formal testbench using AutoCC.

export
DUT_ROOT=$PWD/vscale/src/main/verilog;↪→

python autocc.py -f vscale_core.v -i
vscale_ctrl_constants.vh;↪→

Run JG on the generated testbench:

jg ft_vscale_core/FPV.tcl -proj
projs/vscale_init &↪→

CEX V1. The tool should find a 9-cycle CEX to the asser-
tion as__dmem_hwrite in a second of computation time.

Waveform V1. Clicking on the assertion in the GUI opens
a waveform window. To visualize the CEX, we add a list of
signals to the waveform window. We can use the signal list
in the file vscale.sig. To load the signal list, go to File
→ Load Signal List, and select vscale.sig from the sigs
folder.

12

In the waveform we would see spy_mode starting in cycle
5. Then, hwrite signal is different in cycle 9 because the
opcode was different in cycle 8 (ctrl.opcode). This is
because the PC is different (PC_IF), since the branch was
taken in one universe and not in the other, because the register
file data was different (regfile.data).

Fix V1. As described in the paper, this is an undercon-
straint in the testbench, since the testbench does not constrain
the register file data to be the same in both universes when
the spy_mode starts. We fix this by adding conditions to the
testbench and re-running JG:

.fixes/fix_underconstrain_vscale.sh;
jg ft_vscale_core/FPV.tcl -proj

projs/vscale_fixed &↪→

A.5.2 CVA6: Uncovering and fixing hardware bugs
Clone CVA6 and checkout the commit without fixes:

cd $AUTOCC_ROOT;
git clone -b autocc

https://github.com/morenes/cva6.git↪→

Run JG on the CVA6 testbench:

jg ft_cva6/FPV.tcl -proj projs/cva6_orig &

CEX C1. The tool should find a CEX to the assertion as_-
_AXI_ar_valid_equal in under 30 minutes with a depth of
76 cycles (this may vary depending on the JG version).

Waveform C1. The waveform can be seen with the list of
signals cva6_c1.sig from the sigs folder.

In the waveform we would see the PC being different be-
cause instr_compressed had a different value. This propa-
gated based on garbage data being read from the instruction
cache during an exception.

Fix C1. Zero out data coming from the instruction cache
if the line is not a hit. We apply the fix by checking out a
branch with the patch already included.

cd cva6; git checkout autocc_fix_cex1;
cd ..;
jg ft_cva6/FPV.tcl -proj projs/cva6_c1 &

CEX C2. The tool should have found a CEX to the as-
sertion as__AXI_ar_valid_equal in under 6 hours with a
depth of 80 cycles.

Waveform C2. We add the list of signals cva6_c2.sig
from the sigs folder.

In the waveform we would see ariane1.ex_stage_-
i.lsu_i.gen_mmu_sv39.i_cva6_mmu.i_ptw.state_q
transitioning from WAIT_VALID to IDLE, which is an illegal
FSM transition caused by ariane1.ex_stage_i.lsu_-
i.gen_mmu_sv39.i_cva6_mmu.i_ptw.flush_i being
set while the PTW is waiting for a response.

Fix C2. Update the FSM to remain in WAIT_VALID even
when flush_i is set.4 We verify the fix by checking out a
branch with the patch already included:

cd cva6; git checkout autocc_fix_cex2;
cd ..;
jg ft_cva6/FPV.tcl -proj projs/cva6_c2 &

4Fix applied upstream: github.com/openhwgroup/cva6/pull/1184

A.5.3 MAPLE: Engineering a covert channel exploit

Install OpenPiton with MAPLE inside it:

cd $AUTOCC_ROOT
git clone -b openpiton-maple

https://github.com/PrincetonUniversity\↪→

/openpiton.git
cd openpiton;
source piton/ariane_setup.sh;
source piton/ariane_build_tools.sh;
Building takes ~5-10 minutes

Clone and build the MAPLE repo:

source ../maple_setup_build.sh
Building takes ~1 minute

Uncovering a covert channel with AutoCC. Run
MAPLE’s FT on JG:

cd $AUTOCC_ROOT
jg ft_maple/FPV.tcl -proj projs/maple_c1 &

In less than 30 minutes we should find a CEX at depth
21, where the assertion as__dev1_merger_vr_noc1_val
fails. We can continue with the RTL simulation step while
this experiment is running.

Exploiting the covert channel in RTL simulation. Run
the attack to reveal the secret key 0xdeadbeef:

cd openpiton/maple;
./run_test.sh 4;

Apply the patch to close the covert channel and run the
system-level test again:

git checkout main;
source ../../maple_setup_build.sh
./run_test.sh 4;

The recovered secret should be 0x0, indicating that the secret
cannot be extracted using this channel anymore.

A.5.4 AES Accelerator: Achieving full proof

Clone the AES repo:

cd $AUTOCC_ROOT
git clone

https://github.com/morenes/aes.git↪→

We run JG on the AES testbench, with the DUT being the
RTL of the AES accelerator:

jg ft_aes_wrap/FPV.tcl -proj projs/aes &

This testbench already includes the architectural modeling
described in Section 4.4 of the paper to avoid spurious CEXs.
The result of this run should be full-proof, i.e. no CEXs
found, in less than 6 hours.

13

REFERENCES

[1] “AutoSVA,” https://github.com/PrincetonUniversity/AutoSVA.

[2] O. Acıiçmez, S. Gueron, and J.-P. Seifert, “New branch prediction
vulnerabilities in OpenSSL and necessary software countermeasures,”
in IMA International Conference on Cryptography and Coding.
Springer, 2007, pp. 185–203.

[3] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. L. Callan, A. G. Zajic,
and M. Prvulovic, “One&Done: A Single-Decryption EM-Based
Attack on OpenSSL’s Constant-Time Blinded RSA.” in USENIX
Security Symposium, vol. 8, 2018, pp. 585–602.

[4] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register
transfer level information flow tracking for provably secure hardware
design,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017. IEEE, 2017, pp. 1691–1696.

[5] J. Balkind, K. Lim, F. Gao, J. Tu, D. Wentzlaff, M. Schaffner,
F. Zaruba, and L. Benini, “OpenPiton+Ariane: The first open-source,
SMP Linux-booting RISC-V system scaling from one to many cores,”
in Computer Architecture Research with RISC-V, CARRV, vol. 19,
2019.

[6] J. Balkind, K. Lim, M. Schaffner, F. Gao, G. Chirkov, A. Li,
A. Lavrov, T. M. Nguyen, Y. Fu, F. Zaruba et al., “BYOC: a ’bring
your own core’ framework for heterogeneous-ISA,” in ASPLOS’25,
2020, pp. 699–714.

[7] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model
checking without BDDs,” in International conference on tools and
algorithms for the construction and analysis of systems. Springer,
1999, pp. 193–207.

[8] J. Buckingham, “Formal for designers,” in Agile Test Driven Dev. for
ASIC, 2016.

[9] Cadence Design Systems Inc., “JasperGold Apps User Guide,” 2015.

[10] Cadence Design Systems Inc., “JasperGold Engine Selection Guide,”
2016.

[11] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “Directfuzz: Automated test generation for rtl designs using
directed graybox fuzzing,” in 2021 58th ACM/IEEE Design
Automation Conference (DAC). IEEE Press, 2021, p. 529–534.
[Online]. Available: https://doi.org/10.1109/DAC18074.2021.9586289

[12] L. P. Carloni, “The case for Embedded Scalable Platforms,” in
Proceedings of the 53rd Design Automation Conference (DAC), Jun.
2016, pp. 17:1–17:6.

[13] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “Fact: a
DSL for timing-sensitive computation,” in Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2019, pp. 174–189.

[14] G. K. Chen, P. C. Knag, C. Tokunaga, and R. K. Krishnamurthy, “An
Eight-Core RISC-V Processor With Compute Near Last Level Cache
in Intel 4 CMOS,” IEEE Journal of Solid-State Circuits, vol. 58, no. 4,
pp. 1117–1128, 2023.

[15] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking.
Cambridge, MA, USA: MIT Press, 2000.

[16] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz,
“Processor hardware security vulnerabilities and their detection by
unique program execution checking,” in 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 2019, pp.
994–999.

[17] Q. Ge, Y. Yarom, T. Chothia, and G. Heiser, “Time protection: the
missing OS abstraction,” in Proceedings of the Fourteenth EuroSys
Conference 2019, 2019, pp. 1–17.

[18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures on
contemporary hardware,” Journal of Cryptographic Engineering,
vol. 8, pp. 1–27, 2018.

[19] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of
microarchitectural timing attacks and countermeasures on
contemporary hardware,” Journal of Cryptographic Engineering,
vol. 8, no. 1, pp. 1–27, 2018.

[20] D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, and L. P. Carloni,
“Accelerator integration for open-source soc design,” IEEE Micro,

vol. 41, no. 4, pp. 8–14, 2021.

[21] K. v. Gleissenthall, R. G. Kıcı, D. Stefan, and R. Jhala, “Iodine:
Verifying constant-time execution of hardware,” in Usenix Security,
vol. 19, no. 10.5555, 2019, pp. 3 361 338–3 361 436.

[22] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with {TLB} attacks,”
in 27th USENIX Security Symposium (USENIX Security 18), 2018, pp.
955–972.

[23] R. Guanciale, M. Balliu, and M. Dam, “Inspectre: Breaking and fixing
microarchitectural vulnerabilities by formal analysis,” in Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, 2020, pp. 1853–1869.

[24] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Communications of the ACM, vol. 62, no. 2, pp. 48–60,
2019.

[25] W.-M. Hu, “Lattice scheduling and covert channels,” in Proceedings
1992 IEEE Computer Society Symposium on Research in Security and
Privacy. IEEE Computer Society, 1992, pp. 52–52.

[26] B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta, and
S. Malik, “Instruction-level abstraction (ILA): A uniform specification
for system-on-chip verification,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 24, no. 1, pp. 1–24,
2018.

[27] R. Hund, C. Willems, and T. Holz, “Practical timing side channel
attacks against kernel space ASLR,” in 2013 IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 191–205.

[28] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “Difuzzrtl:
Differential fuzz testing to find cpu bugs,” in 2021 IEEE Symposium
on Security and Privacy (SP), 2021, pp. 1286–1303.

[29] IEEE Standard for SystemVerilog–Unified Hardware Design,
Specification, and Verification Language, IEEE 1800-2012 Std., 2013.

[30] G. Irazoqui, T. Eisenbarth, and B. Sunar, “A shared cache attack that
works across cores and defies VM sandboxing–and its application to
AES,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 591–604.

[31] R. Kande, A. Crump, G. Persyn, P. Jauernig, A.-R. Sadeghi, A. Tyagi,
and J. Rajendran, “TheHuzz: Instruction fuzzing of processors using
Golden-Reference models for finding Software-Exploitable
vulnerabilities,” in 31st USENIX Security Symposium (USENIX
Security 22). Boston, MA: USENIX Association, Aug. 2022, pp.
3219–3236. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/kande

[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre
attacks: Exploiting speculative execution,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 1–19.

[33] H. Kwon, W. Harris, and H. Esmaeilzadeh, “Proving flow security of
sequential logic via automatically-synthesized relational invariants,” in
2017 IEEE 30th Computer Security Foundations Symposium (CSF).
IEEE, 2017, pp. 420–435.

[34] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).
IEEE Press, 2018, p. 1–8. [Online]. Available:
https://doi.org/10.1145/3240765.3240842

[35] B. W. Lampson, “A note on the confinement problem,”
Commununications of the ACM (CACM), vol. 16, pp. 613–615, 1973.

[36] X. Li, V. Kashyap, J. K. Oberg, M. Tiwari, V. R. Rajarathinam,
R. Kastner, T. Sherwood, B. Hardekopf, and F. T. Chong, “Sapper: A
language for hardware-level security policy enforcement,” in
Proceedings of the 19th international conference on Architectural
support for programming languages and operating systems, 2014, pp.
97–112.

[37] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood,
and B. Hardekopf, “Caisson: a hardware description language for
secure information flow,” ACM Sigplan Notices, vol. 46, no. 6, pp.
109–120, 2011.

[38] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on
security and privacy. IEEE, 2015, pp. 605–622.

[39] A. Magyar, “VSCALE,” https://github.com/LGTMCU/vscale.

14

https://github.com/PrincetonUniversity/AutoSVA
https://doi.org/10.1109/DAC18074.2021.9586289
https://www.usenix.org/conference/usenixsecurity22/presentation/kande
https://www.usenix.org/conference/usenixsecurity22/presentation/kande
https://doi.org/10.1145/3240765.3240842
https://github.com/LGTMCU/vscale

[40] Y. A. Manerkar, D. Lustig, M. Martonosi, and M. Pellauer,
“RTLCheck: Verifying the memory consistency of RTL designs,” in
2017 50th Annual IEEE/ACM MICRO, 2017, pp. 463–476.

[41] O. Matthews, A. Manocha, D. Giri, M. Orenes-Vera, E. Tureci,
T. Sorensen, T. J. Ham, J. L. Aragón, L. P. Carloni, and M. Martonosi,
“MosaicSim: A Lightweight, Modular Simulator for Heterogeneous
Systems,” in 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE, 2020, pp.
136–148.

[42] K. L. McMillan, “Symbolic model checking,” in Symbolic Model
Checking. Springer, 1993, pp. 25–60.

[43] A. Meza, F. Restuccia, R. Kastner, and J. Oberg, “Safety verification
of third-party hardware modules via information flow tracking,” in
Proc. 1st Real-Time Intell. Edge Comput. Workshop (RAGE)
Co-Located 59th Design Autom. Conf.(DAC), 2022, pp. 1–4.

[44] OpenHW Group, “CVA6,” https://github.com/openhwgroup/cva6.

[45] M. Orenes-Vera, “MAPLE,”
https://github.com/PrincetonUniversity/maple.

[46] M. Orenes-Vera, A. Manocha, J. Balkind, F. Gao, J. L. Aragón,
D. Wentzlaff, and M. Martonosi, “Tiny but Mighty: Designing and
Realizing Scalable Latency Tolerance for Manycore SoCs,” in
Proceedings of the 49th Annual International Symposium on
Computer Architecture, ser. ISCA ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 817–830. [Online].
Available: https://doi.org/10.1145/3470496.3527400

[47] M. Orenes-Vera, A. Manocha, D. Wentzlaff, and M. Martonosi,
“AutoSVA: Democratizing Formal Verification of RTL Module
Interactions,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 535–540.

[48] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the Ring (s):
Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical.” 2021.

[49] L. Piccolboni, D. Giri, and L. P. Carloni, “Accelerators & security:
The socket approach,” IEEE Computer Architecture Letters, vol. 21,
no. 2, pp. 65–68, 2022.

[50] Ping Yeung and K. Larsen, “Practical assertion-based formal
verification for SoC,” in 2005 Intl. Symposium on System-on-Chip,
2005, pp. 58–61.

[51] X. Ren, L. Moody, M. Taram, M. C. Jordan, D. M. Tullsen, and
A. Venkat, “I See Dead µops: Leaking Secrets via Intel/AMD
Micro-Op Caches,” 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 361–374, 2021.

[52] F. Restuccia, A. Meza, and R. Kastner, “Aker: A Design and
Verification Framework for Safe and Secure SoC Access Control,” in
2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), 2021, pp. 1–9.

[53] F. Restuccia, A. Meza, R. Kastner, and J. Oberg, “A framework for
design, verification, and management of soc access control systems,”
IEEE Transactions on Computers, vol. 72, no. 2, pp. 386–400, 2023.

[54] K. Rupp, “42 Years of Microprocessor Trend Data,” https:
//www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/,
2018.

[55] E. Seligman, T. Schubert, and M. A. K. Kumar, Formal verification:
an essential toolkit for modern VLSI design. Morgan Kaufmann,
2015.

[56] S. Sutherland, “Who Put Assertions In My RTL Code? And Why?
How RTL Design Engineers Can Benefit from the Use of SVA,”
SNUG Silicon Valley, pp. 1–26, 2015.

[57] Texas Instruments, “OMAP4 mobile applications platform,” Product
Bulletin, 2011.

[58] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 3237–3254. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity22/presentation/trippel

[59] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-Flight Data
Load,” in 2019 IEEE Symposium on Security and Privacy (SP), 2019,
pp. 88–105.

[60] A. Venkat and D. M. Tullsen, “Harnessing ISA diversity: Design of a

heterogeneous-ISA chip multiprocessor,” in ISCA. IEEE Press, 2014.

[61] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power Side-Channel attacks
into remote timing attacks on x86,” in 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX
Association, Aug. 2022, pp. 679–697. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity22/presentation/
wang-yingchen

[62] T. Wei, N. Turtayeva, M. Orenes-Vera, O. Lonkar, and J. Balkind,
“Cohort: Software-Oriented Acceleration for Heterogeneous SoCs,” in
Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 3, ser. ASPLOS 2023. New York, NY, USA:
Association for Computing Machinery, 2023, p. 105–117. [Online].
Available: https://doi.org/10.1145/3582016.3582059

[63] N. Wistoff, M. Schneider, F. K. Gürkaynak, G. Heiser, and L. Benini,
“Systematic prevention of on-core timing channels by full temporal
partitioning,” IEEE Transactions on Computers, vol. 72, no. 5, pp.
1420–1430, 2023.

[64] N. Wistoff, M. Schneider, F. K. Gürkaynak, L. Benini, and G. Heiser,
“Microarchitectural timing channels and their prevention on an
open-source 64-bit RISC-V core,” in 2021 Design, Automation Test in
Europe Conference Exhibition (DATE), 2021, pp. 627–632.

[65] C. Wolf, “SymbiYosys,” https://github.com/YosysHQ/SymbiYosys.

[66] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2018, pp. 168–179.

[67] YosysHQ GmbH, “YosysHQ,” https://www.yosyshq.com/about.

[68] F. Zaruba and L. Benini, “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp.
2629–2640, 2019.

[69] F. Zaruba, F. Schuiki, S. Mach, and L. Benini, “The floating point
trinity: A multi-modal approach to extreme energy-efficiency and
performance,” in 2019 26th IEEE International Conference on
Electronics, Circuits and Systems (ICECS), 2019, pp. 767–770.

[70] Y. Zeng, A. Gupta, and S. Malik, “Automatic generation of
architecture-level models from RTL designs for processors and
accelerators,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 460–465.

[71] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers, “A hardware design
language for timing-sensitive information-flow security,” Acm Sigplan
Notices, vol. 50, no. 4, pp. 503–516, 2015.

15

https://github.com/openhwgroup/cva6
https://github.com/PrincetonUniversity/maple
https://doi.org/10.1145/3470496.3527400
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.usenix.org/conference/usenixsecurity22/presentation/trippel
https://www.usenix.org/conference/usenixsecurity22/presentation/trippel
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://www.usenix.org/conference/usenixsecurity22/presentation/wang-yingchen
https://doi.org/10.1145/3582016.3582059
https://github.com/YosysHQ/SymbiYosys
https://www.yosyshq.com/about

	Introduction
	Background and Prior Work
	Covert Channels
	Formal Methods for Hw Verification

	The AutoCC Approach
	The AutoCC Threat Model
	Formalizing the Threat Model for FPV
	FPV Testbench (FT) Generation Flow
	Generating the DUT Wrapper
	Generating the AutoCC Property file
	AutoCC's FPV Backend Support

	Reducing the State Space via Modularity
	AutoCC During RTL Development

	Evaluation and Results
	The 32-bit Vscale RISC-V core
	The 64-bit CVA6 RISC-V core
	The MAPLE Memory-Access Engine
	An AES Accelerator

	Discussion: HW/SW Protections
	Further Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	How to access
	Hardware dependencies
	Software dependencies

	Installation
	Experiment workflow and expected results
	Vscale: Generating FT and fixing constraints
	CVA6: Uncovering and fixing hardware bugs
	MAPLE: Engineering a covert channel exploit
	AES Accelerator: Achieving full proof

