
OpenPiton: An Open Source Manycore Research Framework

Jonathan Balkind Michael McKeown Yaosheng Fu Tri Nguyen
Yanqi Zhou Alexey Lavrov Mohammad Shahrad Adi Fuchs

Samuel Payne ∗ Xiaohua Liang Matthew Matl David Wentzlaff
Princeton University

{jbalkind,mmckeown,yfu,trin,yanqiz,alavrov,mshahrad,adif}@princeton.edu,
spayne@nvidia.com, {xiaohua,mmatl,wentzlaf}@princeton.edu

Abstract
Industry is building larger, more complex, manycore proces-
sors on the back of strong institutional knowledge, but aca-
demic projects face difficulties in replicating that scale. To
alleviate these difficulties and to develop and share knowl-
edge, the community needs open architecture frameworks
for simulation, synthesis, and software exploration which
support extensibility, scalability, and configurability, along-
side an established base of verification tools and supported
software. In this paper we present OpenPiton, an open source
framework for building scalable architecture research proto-
types from 1 core to 500 million cores. OpenPiton is the
world’s first open source, general-purpose, multithreaded
manycore processor and framework. OpenPiton leverages
the industry hardened OpenSPARC T1 core with modifica-
tions and builds upon it with a scratch-built, scalable uncore
creating a flexible, modern manycore design. In addition,
OpenPiton provides synthesis and backend scripts for ASIC
and FPGA to enable other researchers to bring their designs
to implementation. OpenPiton provides a complete verifica-
tion infrastructure of over 8000 tests, is supported by mature
software tools, runs full-stack multiuser Debian Linux, and
is written in industry standard Verilog. Multiple implemen-
tations of OpenPiton have been created including a taped-out
25-core implementation in IBM’s 32nm process and multi-
ple Xilinx FPGA prototypes.

1. Introduction
Multicore and manycore processors have been growing in
size and popularity fueled by the growth in single-chip tran-
sistor count and the need for higher performance. This trend

∗Now at Nvidia

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

ASPLOS ’16, April 02 - 06, 2016, Atlanta, GA, USA
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2872362.2872414

 Tile

 Chip

chipset

Figure 1: OpenPiton Architecture. Multiple manycore chips
are connected together with chipset logic and networks to
build large scalable manycore systems. OpenPiton’s cache
coherence protocol extends off chip.

has been widespread across the industry with manycore pro-
cessors being fabricated by numerous vendors [49, 70, 82,
84, 86]. Academia has also heavily studied multicore and
manycore [28, 47, 87], though often through the use of
software simulation [14, 21, 31, 50, 59, 81] and model-
ing [43, 72] tools. While software tools are convenient to
work with and provide great flexibility, they do not provide
the high performance, characterization fidelity (power, area,
and frequency), and ability to perform research at-scale that
taking a manycore design to RTL, FPGA, or silicon imple-
mentation can provide.

A major barrier limiting manycore research is the lack of
an easy to use, highly scalable, open source, manycore pro-
cessor design. In order to maximize benefit, such a design
and framework would have robust software tools, be eas-
ily configurable, provide a mature tool ecosystem with OS
support, be written in an industry standard HDL, be easily
synthesizable to FPGA and ASIC, and provide a large test
suite. Building and supporting such an infrastructure is a ma-
jor undertaking which has prevented such prior designs. Our

framework, OpenPiton, attacks this challenge and provides
all of these features and more.

OpenPiton is the world’s first open source, general-
purpose, multithreaded manycore processor. The Open-
Piton platform shown in Figure 1 is a modern, tiled, many-
core design consisting of a 64-bit architecture using the
mature SPARC v9 ISA with a distributed, directory-based,
cache coherence protocol (shared distributed L2) imple-
mented across three physical, 2D mesh Networks-on-Chip
(NoCs). OpenPiton contains a pipelined dual-precision FPU
per core and supports native multithreading to hide mem-
ory latency. OpenPiton builds upon the industry hardened
OpenSPARC T1 [6, 58, 78] core, but sports a completely
scratch-built uncore (caches, cache-coherence protocol, NoCs,
scalable interrupt controller, NoC-based I/O bridges, etc),
a new and modern simulation and synthesis framework, a
modern set of FPGA scripts, a complete set of ASIC back-
end scripts enabling chip tape-out, and full-stack multiuser
Debian Linux support. OpenPiton is available for download
at http://www.openpiton.org.

OpenPiton is scalable and portable; the architecture sup-
ports addressing for up to 500-million cores, supports shared
memory both within a chip and across multiple chips, and
has been designed to easily enable high performance 1000+
core microprocessors and beyond. The design is imple-
mented in industry standard Verilog HDL and does not
require the use of any new languages. OpenPiton enables
research from the small to the large with demonstrated im-
plementations from a single lite-core, PicoPiton, on a Xilinx
Artix 7 operating at 29.5MHz up to Piton, our 25-core cus-
tom ASIC implementation of OpenPiton, taped-out at 1GHz
in 32nm silicon.

OpenPiton has been designed as a platform to enable at-
scale manycore research. An explicit design goal of Open-
Piton is that it should be easy to use by other researchers. To
support this, OpenPiton provides a high degree of integra-
tion and configurability. Unlike many other designs where
the pieces are provided, but it is up to the user to compose
them together, OpenPiton is designed with all of the compo-
nents integrated into the same easy to use build infrastruc-
ture providing push-button scalability. Computer architec-
ture researchers can easily deploy OpenPiton’s source code,
add in modifications and explore their novel research ideas
in the setting of a fully working system. Over 8000 targeted,
high-coverage test cases are provided to enable researchers
to innovate with a safety net that ensures functionality is
maintained. OpenPiton’s open source nature also makes it
easy to release modifications and reproduce previous work
for comparison or reuse.

Beyond being a platform designed by computer archi-
tects for use by computer architects, OpenPiton enables re-
searchers in other fields including OS, security, compilers,
runtime tools, systems, and even CAD tool design to con-
duct research at-scale. In order to enable such a wide range

(a) (b)

Figure 2: Architecture of (a) a tile and (b) chipset.

of applications, OpenPiton is configurable and extensible.
The number of cores, attached I/O, size of caches, number
of TLB entries, presence of an FPU, number of threads, and
network topology are all configurable from a single config-
uration file. OpenPiton is easy to extend; the presence of a
well documented core, a well documented coherence pro-
tocol, and an easy to interface NoC make adding research
features easy. Research extensions to OpenPiton that have
already been built include several novel memory system ex-
plorations, an Oblivious RAM controller, and a new in-core
thread scheduler. The validated and mature ISA and software
ecosystem support OS and compiler research. The release of
OpenPiton’s ASIC synthesis, FPGA synthesis, and back-end
(Place and Route) scripts make it easy for others to port to
new process technologies or FPGAs. In particular, this en-
ables CAD researchers who need large netlists to evaluate
their algorithms at-scale.

The following are our key contributions:

• Creation and release of the world’s first open source,
general-purpose, multithreaded manycore processor.

• Detailed description of the OpenPiton architecture in-
cluding a novel coherent memory system that seamlessly
integrates on-chip and off-chip networks.

• Presentation of multiple use-cases of configurability and
extensibility of the OpenPiton Architecture.

• Comparison of FPGA and ASIC implementations of
OpenPiton

• Characterization of backend synthesis runtimes.
• Characterization of the test coverage of the OpenPiton

test suite.
• Qualitative comparison against prior open source proces-

sors.

2. Architecture
OpenPiton is a tiled-manycore architecture, as shown in
Figure 1. It is designed to be scalable, both intra-chip and
inter-chip.

Intra-chip, tiles are connected via three networks on-chip
(NoCs) in a 2D mesh topology. The scalable tiled architec-
ture and mesh topology allow for the number of tiles within
an OpenPiton chip to be configurable. In the default config-

uration, the NoC router address space supports scaling up to
256 tiles in each dimension within a single OpenPiton chip
(64K cores/chip).

Inter-chip, an off-chip interface, known as the chip bridge,
connects the tile array (through the tile in the upper-left) to
off-chip logic (chipset). The chipset may be implemented on
an FPGA, ASIC, or integrated on an OpenPiton chip. The
chip bridge extends the three NoCs off-chip, multiplexing
them over a single link.

The extension of NoCs off-chip allows the seamless con-
nection of multiple OpenPiton chips to create a larger sys-
tem, as illustrated in Figure 1. The cache-coherence proto-
col extends off-chip as well, enabling shared-memory across
multiple chips. A core in one chip may be cache coherent
with cores in another chip. This enables the study of even
larger shared-memory manycore systems.

2.1 Tile
The architecture of a tile is shown in Figure 2a. A tile
consists of a modified OpenSPARC T1 [58] core, an L1.5
cache, an L2 cache, a floating-point unit (FPU), a CCX
arbiter, and three NoC routers.

The L2 and L1.5 caches connect directly to all three
NoC routers and all messages entering and leaving the tile
traverse these interfaces. The CPU Cache-Crossbar (CCX)
is the crossbar interface used in the OpenSPARC T1 to
connect the cores, L2 cache, FPU, I/O, etc. [6]. The L1.5
is responsible for transducing between CCX and the NoC
router protocol. The CCX arbiter de-multiplexes memory
and floating-point requests from the core to the L1.5 cache
and FPU, respectively, and arbitrates responses back to the
core.

2.2 Core
OpenPiton uses the OpenSPARC T1 [58] core with minimal
modifications. This core was chosen because of its industry-
hardened design, multi-threaded capability, simplicity, and
modest silicon area requirements. Equally important, the
OpenSPARC framework has a stable code base, implements
a mature ISA with compiler and OS support, and comes with
a large test suite.

In the taped out OpenPiton core, the default configuration
for OpenPiton, the number of threads is reduced from four to
two. This was primarily done to reduce the area requirement
of the core and to reduce the pressure on the memory system.
By default, the stream processing unit (SPU), essentially a
cryptographic functional unit, is also removed from the core
to save area. Instructions intending to utilize the SPU will
trigger a trap and are emulated in software. The default TLB
size is 16 entries to reduce area (which reflects the reduction
in the number of threads), but it can be increased to 64 or
decreased down to 8 entries.

Additional configuration registers were added to en-
able extensibility within the core. They are implemented
as memory-mapped registers in an alternate address space

Core
L1

Private
L1.5

Distributed
L2

Off-chip
Memory
Controller

NoC1

NoC2

NoC3

NoC2

NoC3

NoC1

CCX

Figure 3: OpenPiton’s memory hierarchy datapath.
(one way to implement CPU control registers in SPARC).
These configuration registers can be useful for adding ad-
ditional functionality to the core which can be configured
from software, e.g. enabling/disabling functionality, config-
uring different modes of operation, etc.

Many of the modifications to the OpenSPARC T1 core,
like the ones above, have been made in a configurable way.
Thus, it is possible to configure the core to the original
OpenSPARC T1 specifications or a set of parameters differ-
ent from the original OpenSPARC T1 as is the default Open-
Piton core. More details on configurability are discussed in
Section 3.1.

2.3 Cache Hierarchy
OpenPiton’s cache hierarchy is composed of three cache
levels, with private L1 and L1.5 caches and a distributed,
shared L2 cache. Each tile in OpenPiton contains an instance
of the L1 cache, L1.5 cache, and L2 cache. The data path
through the cache hierarchy is shown in Figure 3.

2.3.1 L1 Cache
The L1 cache is reused, with minimal modifications, from
the OpenSPARC T1 design. It is tightly integrated to the
OpenSPARC T1 pipeline, and composed of two separate
caches: the L1 data cache and L1 instruction cache. The
L1 data cache is an 8KB write-through cache; it is 4-way
set-associative and the line size is 16-bytes. The 16KB L1
instruction cache is similarly 4-way set associative but with
a 32-byte line size. Both L1 caches’ sizes can be configured,
as detailed in Section 3.1.2.

There are two issues with the original OpenSPARC T1
L1 cache design which made it suboptimal for use in a
scalable multicore and hence required changes in Open-
Piton. First, write-through caches require extremely high
write-bandwidth to the next cache level, which is likely
to overwhelm and congest NoCs in manycore processors
with distributed caches. This necessitates a local write-back
cache. Second, the cache communication interface needs to
be compliant with OpenPiton’s cache coherence protocol,
i.e., tracking MESI cache line states, honoring remote in-
validations, and communicating through OpenPiton’s NoCs
instead of the OpenSPARC T1’s crossbar. Rather than mod-
ifying the existing RTL for the L1s, we introduced an extra
cache level (L1.5) to tackle both issues.

2.3.2 L1.5 Data Cache
The L1.5 serves as both the glue logic, transducing the
OpenSPARC T1’s crossbar protocol to OpenPiton’s NoC

Global control logic

NoC3
input
buf

NoC2
output

buf

MSHR

Tag
array

State
array

Stall logic

Stall logic

Way
selection

Way
selection

Decode

Decode

Dir
array

Data
array

Msg
to send

NoC1
input
buf

Figure 4: The architecture of the L2 cache.

coherence packet formats, and a write-back layer, caching
stores from the write-through L1 data cache. It is an 8KB
4-way set associative write-back cache (the same size as the
L1 data cache by default) with configurable associativity
and size. The line size is the same as the L1 data cache at
16-bytes.

The L1.5 communicates requests and responses to and
from the core through CCX. The CCX bus is preserved as
the primary interface to the OpenSPARC T1. The L1.5 CCX
interface could relatively easily be replaced with other inter-
faces like AMBA or AXI to accommodate different cores.
When a memory request results in a miss, the L1.5 trans-
lates and forwards request to the L2 through the network-
on-chip (NoC) channels. Generally, the L1.5 issues requests
on NoC1, receives data on NoC2, and writes back modified
cache lines on NoC3, as shown in Figure 3.

While the L1.5 was named as such during the devel-
opment of the Piton ASIC prototype, in traditional com-
puter architecture contexts it would be appropriate to call
it the “private L2” and to call the next level cache the
“shared/distributed L3”. The L1.5 is inclusive of the L1 data
cache; each can be independently sized with independent
eviction policies. As a space- and performance-conscious
optimization, the L1.5 does not cache instructions–these
cache lines are bypassed directly between the L1 instruc-
tion cache and the L2. It is possible to modify the L1.5 to
also cache instructions.

2.3.3 L2 Cache
The L2 cache is a distributed write-back cache shared by all
tiles. The default cache configuration is 64KB per tile and
4-way set associativity, but both the cache size and associa-
tivity are configurable. The cache line size is 64 bytes, larger
than caches lower in the hierarchy. The integrated directory
cache has 64 bits per entry, so it can precisely keep track of
up to 64 sharers by default.

The L2 cache is inclusive of the private caches (L1 and
L1.5). Cache line way mapping between the L1.5 and the
L2 is independent and is entirely subject to the replacement
policy of each cache. In fact, since the L2 is distributed,
cache lines consecutively mapped in the L1.5 are likely to

be strewn across multiple L2 tiles (L2 tile referring to a
portion of the distributed L2 cache in a single tile). By
default, OpenPiton maps cache lines using constant strides
with the lower address bits across all L2 tiles, but Coherence
Domain Restriction (CDR) [30], an experimental research
feature integrated into OpenPiton, can be used to interleave
cache lines belonging to a single application or page across
a software-specified set of L2 tiles.

As shown in Figure 4, the L2 cache is designed with
dual parallel pipelines. The first pipeline (top) receives cache
miss request packets from lower in the cache hierarchy on
NoC1 and sends memory request packets to off-chip DRAM
and cache fill response packets to lower in the cache hierar-
chy on NoC2. The second pipeline (bottom) receives mem-
ory response packets from off-chip DRAM and modified
cache line writeback packets from lower in the cache hier-
archy on NoC3. The first L2 pipeline contains 4 stages and
the second pipeline contains only 3 stages since it does not
transmit output packets. The interaction between the L2 and
the three NoCs is also depicted in Figure 3.

2.4 Cache Coherence and Memory Consistency Model
The memory subsystem maintains cache coherence with a
directory-based MESI coherence protocol. It adheres to the
TSO memory consistency model used by the OpenSPARC
T1. Coherent messages between L1.5 caches and L2 caches
communicate through three NoCs, carefully designed to en-
sure deadlock-free operation.

The L2 is the point of coherence for all memory requests,
except for non-cacheable loads and stores which directly by-
pass the L2 cache. All other memory operations (including
atomic operations such as compare-and-swap) are ordered
and the L2 strictly follows this order when servicing re-
quests.

The L2 also keeps the instruction and data caches coher-
ent. Per the OpenSPARC T1’s original design, coherence be-
tween the two L1 caches is maintained at the L2. When a line
is present in a core’s L1 instruction cache and is loaded as
data, the L2 will send invalidations to the relevant instruction
caches before servicing the load.

High-level features of the coherence protocol include:

• 4-step message communication
• Silent eviction in Exclusive and Shared states
• No acknowledgments for dirty write-backs
• Three 64-bit physical NoCs with point-to-point ordering
• Co-location of L2 cache and coherence directory

2.5 Interconnect
There are two major interconnection types used in Open-
Piton, the NoCs and the chip bridge.

2.5.1 Network On-chip (NoC)
There are three NoCs in an OpenPiton chip. The NoCs con-
nect tiles in a 2D mesh topology. The main purpose of the
NoCs is to provide communication between the tiles for
cache coherence, I/O and memory traffic, and inter-core in-
terrupts. They also route traffic destined for off-chip to the
chip bridge. The NoCs maintain point-to-point ordering be-
tween a single source and destination, a feature often lever-
aged to maintain TSO consistency. In a multi-chip configu-
ration, OpenPiton uses similar configurable NoC routers to
route traffic between chips.

The three NoCs are physical networks (no virtual chan-
nels) and each consists of two 64-bit uni-directional links,
one in each direction. The links use credit-based flow con-
trol. Packets are routed using dimension-ordered wormhole
routing to ensure a deadlock-free network. The packet for-
mat preserves 29 bits of core addressability, making it scal-
able up to 500 million cores.

To ensure deadlock-free operation, the L1.5 cache, L2
cache, and memory controller give different priorities to
different NoC channels; NoC3 has the highest priority, next
is NoC2, and NoC1 has the lowest priority. Thus, NoC3
will never be blocked. In addition, all hardware components
are designed such that consuming a high priority packet is
never dependent on lower priority traffic. While the cache
coherence protocol is designed to be logically deadlock free,
it also depends on the physical layer and routing to also be
deadlock free.

Classes of coherence operations are mapped to NoCs
based on the following rules, as depicted in Figure 3:

• NoC1 messages are initiated by requests from the private
cache (L1.5) to the shared cache (L2).

• NoC2 messages are initiated by the shared cache (L2) to
the private cache (L1.5) or memory controller.

• NoC3 messages are responses from the private cache
(L1.5) or memory controller to the shared cache (L2).

2.5.2 Chip Bridge
The chip bridge connects the tile array to the chipset, through
the upper-left tile, as shown in Figure 1. All memory and I/O
requests are directed through this interface to be served by
the chipset. Its main purpose is to transparently multiplex
the three physical NoCs over a single, narrower link in pin-
limited chip implementations.

The chip bridge contains asynchronous buffers to bridge
between I/O and core clock domains. It implements three
virtual off-chip channels over a single off-chip physical
channel, providing the necessary buffering and arbitration
logic. The off-chip channel contains two 32-bit unidirec-
tional links, one in each direction, and uses credit-based
flow control. At 350MHz, Piton’s target I/O frequency, the
chip bridge provides a total bandwidth of 2.8GB/s.

2.6 Chipset
The chipset, shown in Figure 2b, houses the I/O, DRAM
controllers, chip bridge, traffic splitter, and inter-chip net-
work routers. The chip bridge brings traffic from the attached
chip into the chipset and de-multiplexes it back into the three
physical NoCs. The traffic is passed to the inter-chip network
routers, which routes it to the traffic splitter if it is destined
for this chipset. The traffic splitter multiplexes requests to
the DRAM controller or I/O devices, based on the address
of the request, to be serviced. If the traffic is not destined for
this chipset, it is routed to another chipset according to the
inter-chip routing protocol. Traffic destined for the attached
chip is directed back through similar paths to the chip bridge.

2.6.1 Inter-chip Routing
The inter-chip network router is configurable in terms of
router degree, routing algorithm, buffer size, etc. This en-
ables flexible exploration of different router configurations
and network topologies. Currently, we have implemented
and verified crossbar, 2D mesh, 3D mesh, and butterfly
networks. Customized topologies can be explored by re-
configuring the network routers.

We have proven that our network routing protocols can
safely extend and be further routed (under some constraints)
off chip while maintaining their deadlock-free nature.

2.7 Floating-point Unit
We utilize the FPU from OpenSPARC T1 [58]. In Open-
Piton, there is a one-to-one relationship between cores and
FPUs, in contrast to the OpenSPARC T1, which shares one
FPU among eight cores [6]. This was primarily done to boost
floating-point performance and to avoid the complexities of
having shared FPUs among a variable number of tiles. The
CCX arbiter always prioritizes the L1.5 over the FPU in ar-
bitration over the shared CCX interface into the core.

3. Platform Features
This section discusses the flagship features of OpenPiton
that make it a compelling platform for doing manycore re-
search.

3.1 Configurability
OpenPiton was designed to be a configurable platform, mak-
ing it useful for many applications. Table 1 shows Open-
Piton’s configurability options, highlighting the large design
space that it offers.

3.1.1 PyHP for Verilog
In order to provide low effort configurability of our Verilog
RTL, we make use of a Python pre-processor, the Python
Hypertext Processor (PyHP) [63]. PyHP was originally de-
signed for Python dynamic webpage generation and is akin
to PHP. We have adapted it for use with Verilog code. Pa-
rameters can be passed into PyHP and arbitrary Python code

Component Configurability Options
Cores (per chip) Up to 65,536

Cores (per system) Up to 500 million
Threads per Core 1/2/4

TLBs 8/16/32/64 entries
L1 I-Cache 16/32KB
L1 D-Cache 8/16KB

Floating-Point Unit Present/Absent
Stream-Processing Unit Present/Absent

L1.5 Cache Number of Sets, Ways
L2 Cache Number of Sets, Ways

Intra-chip Topologies 2D Mesh, Crossbar
Inter-chip 2D Mesh, 3D Mesh,
Topologies Crossbar, Butterfly Network

Bootloading SD Card, UART

Table 1: Supported OpenPiton Configuration Options

can be used to generate testbenches or modules. PyHP en-
ables extensive configurability beyond what is possible with
Verilog generate statements alone. The motivation for us-
ing PyHP came from the inability to view the intermediate
code after pre-processing Verilog generate statements, which
made debugging difficult.

3.1.2 Core Configurability
As mentioned previously, the cores at the heart of OpenPiton
are two-way threaded by default with an FPU per tile. Open-
Piton preserves the OpenSPARC T1’s ability to modify TLB
sizes, thread counts, and the presence or absence of the FPU
and SPU. As shown in Table 1, OpenPiton offers the option
to select from 1 to 4 hardware threads, vary the TLB between
8 and 64 entries (in powers of two), and choose whether or
not to include an FPU, an SPU, or both in each tile. Addi-
tionally, the L1 data and instruction caches can be doubled
in size. Future support will include configuration of the L1
caches’ associativity.

3.1.3 Cache Configurability
Leveraging PyHP, OpenPiton provides parameterizable generic
flop-based memories for simulation in addition to the infras-
tructure for using custom or proprietary SRAMs. This en-
ables the configurability of cache parameters. The associa-
tivity and size of the L1.5 and L2 caches are configurable,
though the line size remains static. OpenPiton also includes
scripts which automate the generation of correctly sized
RAMs necessary for FPGA implementations, providing a
push-button approach to FPGA implementation.

3.1.4 Manycore Scalability
PyHP also enables the creation of scalable meshes of cores,
drastically reducing the code size and complexity in some
areas adopted from the original OpenSPARC T1. Open-
Piton automatically generates all core instances and wires
for connecting them from a single template instance. This
reduces code complexity, improves readability, saves time

when modifying the design, and makes the creation of
large meshes straightforward. The creation of large two-
dimensional mesh interconnects of up to 256x256 tiles is
reduced to a single instantiation. The mesh can be any rect-
angular configuration and the dimensions do not need to be
powers of two. This was a necessary feature for our 5x5
(25-core) tape-out.

3.1.5 NoC Topology Configurability
Two-dimensional mesh is not the only possible NoC connec-
tion topology for OpenPiton. The coherence protocol only
requires that messages are delivered in-order from one point
to another point. Since there are no inter-node ordering re-
quirements, the NoC can easily be swapped out for a cross-
bar, higher dimension router, or higher radix design. Cur-
rently, OpenPiton can be configured with a crossbar, which
has been tested with four and eight cores with no test re-
gressions. Other NoC research prototypes can easily be inte-
grated and their performance, energy, and other characteris-
tics can be determined through RTL or gate-level simulation,
or by FPGA emulation.

3.1.6 Multi-chip Scalability
Similar to the on-chip mesh, PyHP enables the generation of
a network of chips starting with the instantiation of a single
chip. OpenPiton provides an address space for up to 8192
chips, with 65,536 cores per chip. In conjunction with the
scalable cache coherence mechanism built into OpenPiton,
half-billion core systems can be built. This configurability
enables the building of large systems to test ideas at scale.

3.1.7 Case Study: PicoPiton
To demonstrate the elasticity of OpenPiton’s design space,
we created a minimized configuration called PicoPiton,
which fits on a Digilent Nexys 4 DDR board. Currently, this
board costs only $160 (US) for academic purchase, making
it an ideal solution for low-cost academic prototyping with
OpenPiton. The small area of this board required size reduc-
tions for many structures. The final version of PicoPiton is
single threaded with no FPU, SPU, or chip bridge, 8 TLB en-
tries and a 32KB L2 cache. PicoPiton is able to reach a clock
frequency of 29.5MHz and is shown in Figure 5 executing
”Hello, world!” over a serial connection.

3.2 Extensibility
One of the most prominent design goals for OpenPiton was
to create a framework which could easily be extended. This
enables rapid prototyping of research ideas backed by in-
frastructure for validation, characterization, and implemen-
tation. This section discusses some of the ways in which
OpenPiton is extensible and presents case studies demon-
strating how OpenPiton has already been used in research.

Figure 5: PicoPiton printing Hello World to UART.

3.2.1 Core Replacement
Given their importance [28, 41], support for heterogeneous
systems architectures in OpenPiton is compelling. Future
plans for OpenPiton include building a heterogeneous mesh
of cores and accelerators connected to OpenPiton’s NoC
and memory system. Integrating an OpenSPARC T2 core
would be straightforward as it uses a similar CCX crossbar
interface. With the removal of the CCX arbiter, the L1.5
could likely communicate with any other TSO-compliant
core. If the core’s L1 cache were a write-back cache, a
simple transducer could potentially replace the L1.5 cache
entirely.

3.2.2 Accelerators
Accelerators can be easily connected to the NoC thereby
enabling integration into the cache coherence protocol. As
OpenPiton’s coherence protocol is open source and docu-
mented, this provides a unique opportunity for accelerator
researchers. Accelerators which participate in the coherence
protocol can work cooperatively and in parallel with other
accelerators or general purpose cores, utilizing OpenPiton’s
modern NoC based architecture and cache-coherence proto-
col. OpenPiton enables this type of research at scale, only
possible previously through high-level simulation.

3.2.3 AXI-Lite Bridge
OpenPiton includes an AXI4-Lite bridge that provides con-
nectivity to a wide range of I/O devices by interfacing mem-
ory mapped I/O operations from the NoCs to AXI-Lite.
Given OpenPiton prototypes make use of Xilinx FPGAs,
Xilinx-provided intellectual property (IP) cores compatible
with AXI and AXI-Lite interfaces can be seamlessly inte-
grated with OpenPiton. The Xilinx UART IP core, which
uses the AXI-Lite interface, has been successfully inte-
grated into the OpenPiton FPGA prototypes through mem-
ory mapped I/O. By using a standard interface like AXI,
many I/O devices can be interfaced with OpenPiton and ex-
isting drivers can be reused.

3.2.4 Case Studies
Several case studies demonstrate how the OpenPiton plat-
form has thus far been used to enable research.

Execution Drafting Execution Drafting [46] (ExecD) is
an energy saving microarchitectural technique for multi-
threaded processors which leverages duplicate computation.
ExecD is a more ad-hoc case study, as it required modifi-
cation to the OpenSPARC T1 core. Therefore, it was not as
simple as plugging a standalone module into the OpenPiton
system. Instead the core microarchitecture needed to be un-
derstood and the implementation tightly integrated with the
core. However, the integration of ExecD into OpenPiton
revealed several implementation details that had been ab-
stracted away in simulation, such as tricky divergence con-
ditions in the thread synchronization mechanisms. This re-
iterates the importance of taking designs to implementation
in an infrastructure like OpenPiton.

ExecD takes over the thread selection decision from the
OpenSPARC T1 thread selection policy and instruments the
front-end to achieve energy savings. ExecD is a good exam-
ple of the addition of configuration registers in OpenPiton.
It utilizes some of the configuration register address space to
set whether ExecD is enabled, which thread synchronization
method is used, etc.

Coherence Domain Restriction Coherence Domain Re-
striction [30] (CDR) is a novel cache coherence framework
designed to enable large scale shared memory with low stor-
age and energy overhead. CDR restricts cache coherence of
an application or page to a subset of cores, rather than keep-
ing global coherence over potentially millions of cores. In
order to implement it in OpenPiton, the TLB is extended
with extra fields and both the L1.5 and L2 cache are modified
to fit CDR into the existing cache coherence protocol. CDR
is specifically designed for large scale shared memory sys-
tems such as OpenPiton. In fact, OpenPiton’s million-core
scalability is not feasible without CDR because of increas-
ing directory storage overhead.

Oblivious RAM Oblivious RAM (ORAM)[29, 32, 75] is
a memory controller designed to eliminate memory side
channels. An ORAM controller was integrated into the 25-
core Piton ASIC, providing the opportunity for secure access
to off-chip DRAM. The controller was directly connected to
OpenPiton’s NoC, making the integration straightforward. It
only required a handful of files to wrap an existing ORAM
implementation.

3.3 Platform Stability
One of the benefits of OpenPiton is its stability, maturity,
and active support. Much of this is inherited from using the
OpenSPARC T1 core, which has a stable code base and has
been studied for years allowing the code to be reviewed and
bugs fixed by many people. In addition, it implements a ma-
ture, commercial ISA, SPARC V9. This means that there

is existing full tool chain support for OpenPiton, including
Debian Linux OS support, a compiler, and an assembler.
SPARC is an actively supported platform, with a number
of supported OSs and Oracle recently releasing Linux for
SPARC in late 20151. Porting the OpenSPARC T1 hyper-
visor required changes to fewer than 10 instructions, and a
newer Debian Linux distribution was modified with read-
ily available, open source, OpenSPARC T1-specific patches
written as part of Lockbox[15, 20].

Another feature inherited from using the OpenSPARC T1
core is the large test suite. This includes tests for not only the
core, but the memory system, I/O, cache coherence protocol,
etc. When making research modifications to OpenPiton, this
allows the researcher to rely on an established test-suite to
ensure that their modifications did not introduce any regres-
sions. In addition, the OpenPiton documentation details how
to add new tests to validate modifications and extend the ex-
isting test suite.

OpenPiton provides additional stability on top of what is
inherited from OpenSPARC T1. The tool flow was updated
to modern tools and ported to modern Xilinx FPGAs. Open-
Piton is also used extensively for research internally. This
means there is active support for OpenPiton and the code is
constantly being improved and optimized. In addition, the
open sourcing of OpenPiton will strengthen its stability as a
community is built around it.

3.4 Validation
OpenPiton features more than 8000 directed assembly tests
for testing not only core functionality, but that of the exten-
sions like ExecD (Section 3.2.4). Validation is done through
a mix of assembly tests, randomized assembly test gener-
ators, and tests written in C. Scripts are provided that run
large regressions in parallel with the SLURM job sched-
uler and automatically produce pass/fail reports, coverage
reports, and even run chip synthesis to verify that synthesis-
safe Verilog has been used.

3.4.1 Randomized Testing
The OpenPiton test suite contains a number of randomized
assembly test generators written in Perl, known as “PAL”
files. These tests have a number of parameters and can be
seeded to generate as many test instances as are desired.
2100 of the core OpenPiton tests make use of these PAL test
generators, handling behaviors covering memory, branches,
ALU, FPU, thread scheduling, and more.

3.4.2 C Tests
While the OpenPiton validation methodology focuses pri-
marily on directed and randomized assembly tests, the in-
frastructure also supports the use of tests written in C. We
have written a small stable of C tests akin to microbench-

1 Linux for SPARC is hosted at https://oss.oracle.com/projects/
linux-sparc/

Synthesis Pass 1

RTL Constraints

Post-Syn STA Pass 1

SPEF Gate-level Netlist

Place and Route Pass 1

ECO

Post-PAR STA Pass 1

SBPF

Constraints

Constraints

Post-PAR
STA Netlist

Constraints

Synthesis Pass 2

DEF

Post-Syn STA Pass 2

Gate-level Netlist

Place and Route Pass 2

ECO Constraints

SPEF Constraints

Post-PAR STA Pass 2

SBPF
Post-PAR
STA Netlist

Constraints

Merge GDSII

GDSII

Floorplan/PGN

LVS DRC

GDSII

Post-PAR
LVS Netlist

Tool Legend

Synopsys Design Compiler

Synopsys PrimeTime

Synopsys IC Compiler

Synopsys IC Workbench
EV Plus

Mentor Graphics Calibre

Figure 6: Synthesis and back-end tool flow.

marks which can perform any standard C functions (includ-
ing console I/O but excluding file I/O) and link against static
libraries.

3.4.3 Coverage Reports
In order to gain an understanding of how effective the test-
ing regime is at a given time and to best focus testing efforts,
coverage reports are automatically generated alongside the
results of a regression. These reports include coverage break-
downs per module and per module instantiation and include
line, toggle, condition, branch and finite state machine cov-
erage.

3.5 Synthesis and Back-end Support
OpenPiton provides scripts to aid in synthesis and back-end
for generating realistic area results or for taping-out new de-
signs based on OpenPiton. The scripts are identical to the
ones used to tape-out the Piton ASIC prototype, however ref-
erences to the specific technology used have been removed
due to proprietary foundry IP concerns and the scripts have
been made process agnostic. Directions are included with
OpenPiton which describe how to port to a new foundry kit.
This allows the user to download OpenPiton, link to the nec-
essary process development kit files, and run the full tool
flow to tape-out a specific instance of OpenPiton. In this
sense, OpenPiton is portable across process technologies and
provides a complete ecosystem to implement, test, proto-
type, and tape-out research.

The tool flow provided with OpenPiton is shown in Fig-
ure 6 and is mainly a Synopsys tool flow. The figure shows
a two-pass flow, however the number of passes is config-

urable. Increasing the number of passes improves the qual-
ity of results, but with diminishing returns. The Verilog RTL
along with design constraints are first passed to Synopsys
Design Compiler, which synthesizes a gate-level netlist from
the behavioral RTL. The resulting netlist, along with the
constraints, are passed to Synopsys PrimeTime to perform
post-synthesis static timing analysis (STA). This analyzes
the gate-level netlist against the constraints specified and re-
ports the results. If the constraints are not met, Synopsys
PrimeTime may output an engineering change order (ECO)
file, which suggests modifications to the netlist to meet the
constraints.

The gate-level netlist, constraints, ECO file, and physi-
cal floorplan (specified by the user) are passed to Synop-
sys IC Compiler to perform placement and routing (PAR).
However, before PAR, the ECO modifications are applied to
the gate-level netlist to give Synopsys IC Compiler a better
chance of meeting the constraints. After PAR is complete,
the post-PAR netlist is again passed to Synopsys PrimeTime,
along with the constraints, to perform STA and check the
design against the constraints. Although not shown in the
figure, Synopsys PrimeTime may output an ECO file again,
which can be fed back into Synopsys IC compiler, along with
the post-PAR netlist and physical layout library to apply the
ECO. We have found the ECOs from PrimeTime to be very
useful in meeting timing.

The output of this flow is a fully placed and routed de-
sign in GDSII format. If it meets the constraints, design
rule checking (DRC) and layout versus schematic checking
(LVS) are performed. However, it is likely the constraints
may not be met after the first pass. In this case, results can
be improved by performing the same flow up to this point
a second time, while passing physical information from the
output of the first IC Compiler pass and the ECO from the
output of PrimeTime. Any number of passes through this
flow is possible, but we saw diminishing returns after two
passes. If constraints are still not met, it may be the case that
the constraints and/or floorplan must be modified.

After a GDSII of the design that meets the constraints is
obtained, it must be merged with the GDSII of any third-
party IP to generate the final GDSII. This is done with
the Synopsys IC Workbench EV Plus tool. After the final
merged GDSII is generated, it is passed to Mentor Graph-
ics Calibre for LVS and DRC checking. DRC requires the
GDSII and the DRC deck from the process development kit.
LVS only requires the GDSII and the post-PAR gate-level
netlist.

A final consideration for synthesis and back-end flow is
what to use for the input RTL. If one were to give the full
OpenPiton RTL as input to synthesis, the flow would take
an unreasonable amount of time and may not even com-
plete successfully. For this reason, the design is generally
broken down into hierarchical blocks. The leaf blocks are
run through the flow first, and imported as black-boxes in

Figure 7: Two Virtex 6 (ML605) boards connected by the
chip bridge.

Board Frequency Cores
(1 Core)

Xilinx VC707 (Virtex-7) 67MHz 4
Digilent Genesys 2 (Kintex-7) 60MHz 2

Digilent Nexys 4 DDR (Artix-7) 29MHz 1
Xilinx ML605 (Virtex-6) 18MHz 2

Table 2: FPGA Boards Currently Supported by OpenPiton

the flow for modules higher in the hierarchy. This is done
until the top-level chip is reached. Since the hierarchy may
depend on process technology, design modifications, etc. the
OpenPiton synthesis and back-end scripts make it easy to
modify and define new module hierarchies.

3.5.1 Gate-level Simulation
Gate-level simulation provides more accurate results than
behavioral simulation because it is based on post-synthesis
netlists and can account for delays through standard cells.
OpenPiton extends the gate-level simulation framework
from the OpenSPARC T1 and is capable of simulating the
entire chip or any sub-modules. Since timing information
is available from the standard cells, gate-level simulation
is able to check for potential timing violations in the de-
sign. The gate-level simulation results can also be compared
against the behavioral simulation outputs for functional ver-
ification or fed into PrimeTime PX to estimate power con-
sumption. Gate-level power estimation is valuable, as it pro-
vides more accurate power estimates than tools that rely on
modeling in software simulations.

3.6 Prototyping
This section discusses the prototype implementations of spe-
cific OpenPiton instances, which validate it as a viable, mod-
ern, and competitive platform.

Figure 8: OpenPiton running on a Xilinx VC707 board exe-
cuting Tetris on full-stack multiuser Debian Linux
3.6.1 FPGA Prototypes
OpenPiton has been successfully ported to the Virtex-6
(ML605 Evaluation Board), Artix-7 (Digilent Nexys 4 DDR),
Kintex-7 (Digilent Genesys 2) and Virtex-7 (VC707 Evalu-
ation Board) Xilinx FPGA platforms, as shown in Table 2,
to prototype the design and provide improved test through-
put. These prototypes validate the full spectrum of Open-
Piton’s configurability, from the PicoPiton Artix-7 design
at the low-end intended for very small prototypes, to the
Virtex-7, which is large enough to fit four OpenPiton cores.

The Virtex and Kintex designs have the same features as
the ASIC prototype, validating the feasibility of that partic-
ular design (multicore functionality, etc.), and can even in-
clude the chip bridge to connect multiple FPGAs via a FPGA
Mezzanine Card (FMC) link, as shown in Figure 7. All of
the FPGA prototypes feature the NoC to DDR transducer,
located on an external FPGA for Piton.

After verifying the functionality of the NoC to AXI-Lite
bridge in simulation, it took just a few hours to integrate a
serial port and run the first I/O-based ”Hello, world!” test
on PicoPiton as shown in Figure 5. We expect users of the
OpenPiton FPGA prototypes to achieve a similarly quick
turnaround from initial Verilog implementation to getting
results at speeds far surpassing behavioral simulation.

OpenPiton on the Virtex and Kintex boards can load bare-
metal programs over a serial port and can boot full stack mul-
tiuser Debian Linux from an SD or MicroSD card, depicted
in Figure 8 running Tetris. Booting Debian on the VC707
board running at 67MHz takes about 12 minutes, compared
to 45 minutes for the original OpenSPARC T1, which relied
on a tethered MicroBlaze for its memory and I/O requests.
This improvement combined with the move to Xilinx’s Vi-
vado Suite for FPGA synthesis and implementation drasti-

0

20

40

60

80

100

Tile CCX	Arbiter FPU L1.5 L2 NoC	Router Core Chip	Bridge

Co
ve
ra
ge
	P
er
ce
nt
ag
e Overall	Score

Line

Cond

Toggle

FSM

Branch

Figure 9: Test suite coverage results by module (default
OpenPiton configuration).

cally increased productivity when testing operating system
or hardware modifications.

3.6.2 ASIC Prototype
The Piton ASIC prototype was taped out in March 2015 on
IBM’s 32nm SOI process with a target clock frequency of
1GHz. It features 25 tiles in a 5x5 mesh on a 6mm x 6mm
(36mm2) die. Each tile is two-way threaded including ExecD
and CDR, while ORAM was included at the chip level.
The ASIC provides validation of OpenPiton as a research
platform and shows that ideas can be taken from inception
to silicon with OpenPiton.

4. Results
This section provides experimental results from OpenPiton
simulation and prototyping.

4.1 Simulation
Verilog simulation in OpenPiton utilizes Synopsys VCS,
though there are plans to expand to other Verilog simula-
tors in the future. OpenPiton Verilog simulation runs at 4.85
kilo-instructions per second (KIPS) per tile with Synopsys
VCS on a 2.4GHz Intel Westmere Xeon E7-4870 processor.
While simulation speed varies with tile count, test stimuli,
etc., this value is obtained from averaging across the Open-
Piton test suite, which includes various numbers of cores and
instruction mixes, and is normalized to a single tile. While
the simulation speed may seem slow compared to many ar-
chitectural simulators, it is a very detailed RTL simulation.
In addition, the ability to synthesize OpenPiton to an FPGA
makes up for this shortcoming.

Another important metric of OpenPiton is the design cov-
erage resulting from executing the full test suite. This pro-
vides an idea of how well the test suite exercises the de-
sign. In addition, running coverage after making modifica-
tions can give insight into how well the modifications are
tested. Figure 9 shows the different types of coverage (line,
condition, toggle, FSM, branch) resulting from running the
full OpenPiton test suite for all major architectural blocks.

Each architectural block includes the coverage of all
blocks beneath it in the module hierarchy. For example, the
tile coverage results include the weighted average of cover-
age results from the CCX arbiter, FPU, L1.5, L2, NoC router,
and OpenSPARC T1 core. The missing bars in the figure are
not due to zero coverage, but due to the coverage tool’s in-
ability to identify that type of coverage for that particular

0

0.2

0.4

0.6

0.8

1

Default 1	Thread No	FPU 16	TLB 64KB	L2

Fr
ac
tio
n	
of
	R
es
ou
rc
es
	

Us
ed

Slice	LUTs

Slice	Registers

Occupied	Slices

Figure 10: Virtex 6 area comparison for different configura-
tions.

0
0.2
0.4
0.6
0.8
1

1.2
1.4

Fr
ac
tio
n	
of
	R
es
ou
rc
es
	

Us
ed

Slice	LUTs

Slice	Registers

Block	RAM	Tiles

Figure 11: Artix 7 area comparison for different configura-
tions.

design. For example, the CCX arbiter does not have a bar
for condition coverage, as there are no complex conditional
statements in that design. The interconnections also see low
coverage as some paths are not thoroughly used (e.g. the
chip bridge sees little NOC1 traffic and NOC2/NOC3 traffic
is largely unidirectional when cross-chip sharing is mini-
mal). Overall, the coverage is good, which demonstrates
that the OpenPiton test suite does a good job of exercising
the OpenPiton design.

4.2 Prototyping
Our FPGA prototyping efforts have so far resulted in pro-
totypes for four different Xilinx boards: Virtex 6 (ML605),
Artix 7 (Nexys 4 DDR), Kintex 7 (Genesys 2), and Virtex
7 (VC707). These prototypes are capable of achieving clock
frequencies of 18MHz, 29.5MHz, 60MHz, and 67MHz re-
spectively, as summarized in Table 2.

The default configuration discussed here has two threads,
8 entry TLBs, 8KB L1D, 16KB L1I, 8KB L1.5, 32KB L2,
and the FPU included. The area breakdowns for the default
configuration on each board are listed in Table 3. Note that
the default configuration is too large for the Artix 7 and had
to be pared down to fit. Figures 10 and 11 show the resource
utilization for different configuration options on the Virtex 6
(post-place and route) and Artix 7 (post-synthesis) FPGAs,
as a proportion of the available resources on each FPGA.
These figures indicate the rough cost of modifying a par-
ticular configuration value, but have some counter-intuitive
results. For example, increasing the L2 to 64KB on the Vir-
tex 6 causes Xilinx ISE to better map the design to included
BRAM, thus decreasing the amount of area used.

Slice LUTs Slice Regs Occupied Slices
Virtex 6 240T 88,682 56,141 29,691
(Available) 150,720 301,440 37,680

Slice LUTs Slice Regs Block RAM Tiles
Artix 7 100T 75,253 52,993 53
(Available) 63,400 126,800 135

Slice LUTs Slice Regs Block RAM Tiles
Kintex 7 325T 68,976 50403 54
(Available) 203,800 407,600 445

Slice LUTs Slice Regs Block RAM Tiles
Virtex 7 485T 68,303 51,084 23
(Available) 303,600 607,200 1,030

Table 3: Default resource utilization vs available resources
for each FPGA.

Core
34.97%

L2
22.32%

L1.5
7.67%

FPU
2.66%

NoC Router0
0.93%

NoC Router1
0.90%

NoC Router2
0.90%

CCX Arbiter+
Misc. Logic

0.82%

Filler Cells
28.81%

Total Area:
1.17mm2

(a) ASIC Piton

Core
50.96%

L2
23.11%

L1.5
14.35%

FPU
7.74%

NoC Router0
0.70%

NoC Router1
0.83%

NoC Router2
0.86%

CCX Arbiter+
Misc. Logic

0.82%

(b) FPGA PicoPiton

Figure 12: Tile area breakdown.

Submodule SYN PAR STA ECO DRC LVS Total
NoC Router 0.32 2.35 0.02 N/A 0.04 0.04 2.80

L1.5 0.40 15.45 0.05 3.55 0.24 0.12 34.18
Core 1.16 36.82 0.19 3.51 1.09 0.32 78.04
Tile 1.11 22.95 0.12 2.69 2.10 0.49 55.89
Chip 4.20 79.19 0.67 11.36 9.04 0.93 104.91

Table 5: Time durations (in hours) of selected synthesis
and back-end stages for selected submodules. If any stage
executes more than once (STA or for multi-pass flow), the
maximum duration is shown.

The area breakdown of a default single tile on Artix 7
is shown in Figure 12b. This breakdown is based on Xilinx
Vivado “cells”, rather than LUT or BRAM utilization.

4.3 ASIC Prototype
The Piton ASIC prototype was taped-out on the IBM 32nm
SOI process with a target clock frequency of 1GHz. The area
breakdown of a single tile is shown in Figure 12a. The to-
tal tile area is 1.17mm2 with about 30% of the area taken
up by filler cells. Space was overprovisioned by about 30%
(70% utilization) in floorplanning stages to give PAR a bet-
ter chance of meeting the constraints. This space was filled
with filler cells after the design was successfully PARed.

Measuring with a 2.4GHz Intel Westmere machine, the
synthesis and back-end scripts take 78 hours (3.25 days),
56 hours (2.3 days), and 104 hours (4.3 days) to run the
full tool flow for the core, the tile, and the whole chip with

Processor Architecture Performance FPU OS MMU
HW Multicore/ Prototype

NoC HDL
Back-end

License
Last

Multithreaded Manycore/GPU Core Count Scripts Update
pAVR [57] 8b AVR Low 7 7 7 7 No - 7 VHDL 7 GPL v2 Mar 2009
openMSP430 [36, 55] 16bMSP430 Low 7 7 7 7 No - 7 Verilog 7 BSD Jul 2015
CPU86 [34] 16b x86 Low 7 3 7 7 No - 7 VHDL 7 GPL Jun 2014
Zet [4] 16b x86 Low 7 3 7 7 No - 7 Verilog 7 GPL v3 Nov 2013
LatticeMico32 [71] 32b LatticeMico32 Low 7 3 7 7 No - 7 Verilog 7 GPL Oct 2015
ZPU [5] 32b MIPS Low 7 3 7 7 No - 7 VHDL 7 FreeBSD & GPL Apr 2015
SecretBlaze [11] 32b MicroBlaze Low 7 7 7 7 No - 7 VHDL 7 GPL v3 Dec 2012
AltOr32 [53] 32b ORBIS Low 7 3 7 7 No - 7 Verilog 7 LGPL v3 Feb 2015
aeMB [8, 51, 73] 32b MicroBlaze Medium 7 3 7 3 No - 7 Verilog 7 LGPL v3 Feb 2012
Amber [54] 32b ARM v2a Medium 7 3 7 7 No - 7 Verilog 7 LGPL Nov 2015
OpenRISC [56, 79] 32b/64b ORBIS Medium 3 3 3 7 No - 7 Verilog 7 LGPL Dec 2012
MIPS32 r1 [3] 32b MIPS32 r1 Medium 7 3 7 3 No - 7 Verilog 7 LGPL v3 Jul 2015
LEON 3 [24, 65] 32b SPARC V8 Medium 3($) 3 3 7 SMP/AMP - 7 VHDL 7 GPL May 2015
OpenScale [18] 32b MicroBlaze Medium 7 3 7 7 Manycore FPGA/6 3 VHDL 7 GPL v3 Jan 2012
XUM [2, 47] 32b MIPS32 r2 High 7 3 7 3 Manycore FPGA/8 3 Verilog 7 LGPL v3 Jul 2015
MIAOW GPGPU [9] AMD Southern Islands High 3 7 7 3 GPU FPGA/1 3 Verilog 7 BSD 3-Clause & GPL v2 Jan 2016
Simply RISC S1 [68] 64b SPARC V9 High 3 3 3 7 No - 7 Verilog 7 GPL v2 Dec 2008
BERI [1, 83] 64b MIPS/CHERI High 3 3 3 3(BERI2) Multicore FPGA/4 7 Bluespec 7 BERI HW-SW Jun 2015
OpenSPARC T1/T2 [6, 7] 64b SPARC V9 High 3 3 3 3 Multicore ASIC/8 7 Verilog 7 GPL v2 2008
RISC-V Rocket [42, 67] 64b scalar RISC-V High 3 3 3 7 Manycore ASIC/2 3 Chisel 7 BSD 3-Clause Jan 2016
RISC-V Boom [22, 66] 64b scalar RISC-V High 3 3 3 7 Manycore FPGA/? 3 Chisel 7 BSD 3-Clause Jan 2016
OpenPiton 64b SPARC V9 High 3 3 3 3 Manycore ASIC/25 3 Verilog 3 BSD 3-Clause & GPL v2 Jan 2016

Table 4: Taxonomy of differences of open source processors (table data last checked in January 2016).

Submodule SYN PAR STA ECO DRC LVS Peak
NoC Router 5.38 3.55 0.57 N/A 1.40 1.33 5.38

L1.5 19.91 5.97 1.43 5.00 1.73 1.46 19.91
Core 27.19 7.99 1.96 15.05 2.54 4.03 27.19
Tile 28.04 7.71 1.90 13.62 2.48 8.84 28.04
Chip 8.37 64.54 1.34 64.65 8.54 >41 64.65

Table 6: Peak memory usage (in GByte) of selected synthe-
sis and back-end stages for selected submodules. If any stage
executes more than once (STA or for multi-pass flow), the
maximum peak usage is shown.

25 tiles respectively. These runtimes are obtained by adding
up the run times of all synthesis and back-end stages, from
synthesis first pass to DRC and LVS passes. Table 5 details
runtimes of individual synthesis and back-end stages for
select submodules of the Piton ASIC prototype. For stages in
the flow that execute more than once, such as STA or when
using a multi-pass flow, the maximum duration for that stage
is shown.

Resource requirements for synthesis and back-end scripts,
particularly main memory usage, are not excessive. Table 6
(max value is taken for stages that execute more than once)
shows that the most memory intensive step of the synthesis
and back-end flow requires just over 64GB for the top-level
25-tile chip, making it possible for a high-end desktop at the
time of this publication to successfully run through Open-
Piton’s synthesis and back-end flow.

5. Enabled Applications
Open source platforms such as OpenPiton are designed for
flexibility and extensibility, and thus can be easily mod-
ified. Researchers leveraging such platforms need not re-
implement others’ work, which is advantageous for those
who lack adequate resources to build infrastructure from
scratch. These platforms’ independence from a specific tar-

get implementation technology also prevents them from go-
ing obsolete [80]. In this section, we outline potential appli-
cations of the OpenPiton platform in different research do-
mains.

5.1 Architecture
OpenPiton is great tool for computer architecture research
and prototyping. In addition to supporting traditional micro-
architecture research, OpenPiton offers research opportuni-
ties in memory subsystems thanks to its scratch-built uncore.
Researchers may also explore manycore scalability, NoCs,
and NoC-attached accelerators and I/O.

OpenPiton lowers the barrier to implementing ideas in
RTL, while providing accurate estimations of a design’s
area, power and frequency. The extensive test suite comple-
ments the physical implementation by providing behavioral
and/or gate-level simulated, and FPGA-emulated validation.

5.2 Operating Systems
While OS researchers have studied how best to add OS
support for manycore systems [12, 16, 17, 85], the scarcity
of high core-count systems is a barrier to innovation in this
space. OpenPiton can enable such research because it can
scale to large fabrics while providing support for modern
Debian Linux running on an FPGA at tens of MHz.

5.3 Security
Open source processors are widely used by researchers in the
security community. While some researchers simulate using
open source processors to verify their ideas [13, 77], others
build proof-of-concept implementations on FPGA [23, 38,
39, 69, 78]. OpenPiton’s substantial test suite, support for
an OS and hypervisor, and unique manycore infrastructure,
make it a suitable test environment for the security commu-
nity to further examine novel ideas.

5.4 Compilers
OpenPiton’s scalability can assist compiler researchers in
understanding how their solutions scale on real hardware.
It enables the investigation of future programming models
for parallel architectures [62, 64], or how to add automatic
parallelization constructs into current languages [19]. The
use of the SPARC ISA makes compiler research convenient
due to pre-existing compiler support (e.g., GCC).

5.5 Reliability Analysis
Transient and permanent faults can be injected into the RTL
of a target design to simulate the effects of faults on system
functionality. Consequently, metrics such as architectural
vulnerability factor (AVF), failures in time (FIT), and mean
time to failure (MTTF) can be estimated. Many studies [25,
26, 48, 60, 61, 89] have used open source processors to
perform fault injection. They have also been used in thermal
and power management reliability modeling [33, 35] as well
as wearout fault modeling studies [74].

With advances in the scalability of reliability analy-
sis tools, researchers can now evaluate the reliability of
larger circuits. Moreover, efficient fault simulation schemes
have been developed to explore the reliability of multicore
and manycore processors [33, 40]. OpenPiton enables re-
searchers to study how different solutions, across the en-
tire design hierarchy, affect the reliability of a manycore.
It also facilitates researchers to perform manycore-oriented
reliability studies, such as the reliability of NoC architec-
tures [27] and cache coherence protocols.

5.6 Education
Educators have shown the value of using FPGAs in teach-
ing microprocessor architecture [52, 76]. Downloaded from
http://www.openpiton.org, the OpenPiton platform
comes push-button packaged to run on FPGA, including
the widely used and subsidized ($160 Academic, currently)
Digilent Nexys 4 DDR Artix-7 FPGA Board. In addition, be-
cause OpenPiton ships with synthesis and back-end scripts,
students learning digital circuits can easily leverage its ASIC
flow, in a similar approach to [44], on a real modern many-
core processor.

6. Related Work
This section qualitatively compares OpenPiton to other open
source platforms available for research implementation and
prototyping. Table 4 highlights the main differences between
these platforms and OpenPiton.

Most of the open source platforms have rudimentary OS
support, frequently only for embedded real time operating
systems (RTOS) like eCos [45] by ZPU [5]. Few have mem-
ory management units (MMU) needed for full operating
system support. In addition, many projects who do support
system calls/OSs/memory mapped I/O often require a teth-
ered host core to proxy through. In contrast, leveraging the

OpenSPARC T1 core, OpenPiton is a standalone system that
has robust OS and hypervisor support.

Most designs in Table 4 are soft-IPs, synthesizable to FP-
GAs for rapid prototyping, but have not been demonstrated
in ASIC. In contrast, OpenPiton supports both FPGA and
ASIC usage paradigms. Additional low-end available pro-
cessors, not shown in Table 4 are mentioned in two sur-
veys [10, 37]. Moreover, technology limitations [88] and the
end of Dennard scaling [28] have resulted in a paradigm shift
to multi/manycore and heterogeneity [41] and created de-
mand for a truly open source manycore design. Though some
designs have limited multicore scalability (i.e. OpenSPARC
T1&T2 [6, 7]), OpenPiton is specifically engineered for scal-
able core count and chip count.

Some recent academic projects [1, 42, 67, 83] are cen-
tered around high-level synthesis (HLS) tools, citing the
use of past HDL’s as archaic and error-prone. In con-
trast, OpenPiton does not try to innovate in this space.
We deliberately use Verilog to leverage industrial-grade
design/verification/synthesis flow to significantly reduce
design time. Moreover, universal familiarity with Verilog
makes OpenPiton easier to access and understand.

While the RISC-V platform provides a crossbar for multi-
core implementations [67], OpenScale [18], XUM [47], and
OpenPiton benefit from scalable mesh networks.

Last, to the best of our knowledge, OpenPiton is the only
platform that includes the ASIC back-end (place-and-route)
scripts, assisting users with porting the design to other pro-
cess technologies. Furthermore, the industrial-grade CPU
core design together with robust software ecosystem will
prove useful to future research projects.

7. Conclusion
The OpenPiton processor design and framework enables re-
searchers to conduct manycore research at-scale and bring
novel ideas to implementation using a mature tool chain, a
mature ISA, and a complete test suite. OpenPiton can scale
from small designs to large designs as proven with imple-
mentations in ASIC silicon as well as in many prototyped
FPGA boards. OpenPiton is configurable and extensible and
comes with a complete verification infrastructure. We are
optimistic that OpenPiton will serve as an important tool for
scalable manycore processor research and enable more re-
searchers to bring their designs to implementation.

Acknowledgements
This work was partially supported by the NSF under Grants
No. CCF-1217553, CCF-1453112, and CCF-1438980, AFOSR
under Grant No. FA9550-14-1-0148, and DARPA under
Grants No. N66001-14-1-4040 and HR0011-13-2-0005.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of our sponsors.

References
[1] Beri processor ’arcina’ release 1. https://github.com/

CTSRD-CHERI/beri. Accessed Jan. 2016.

[2] eXtensible Utah Multicore (xum). https://github.com/

grantae/mips32r1_xum. Accessed Jan. 2016.

[3] Mips32 release 1. https://github.com/grantae/

mips32r1_core. Accessed Jan. 2016.

[4] Zet processor. http://zet.aluzina.org/index.php/

Zet_processor. Accessed Jan. 2016.

[5] Zylin cpu. https://github.com/zylin/zpu. Accessed
Jan. 2016.

[6] OpenSPARC T1 Microarchitecture Specification. Santa Clara,
CA, 2006.

[7] OpenSPARC T2 Core Microarchitecture Specification. Santa
Clara, CA, 2007.

[8] Aeste Works. Aemb multi-threaded 32-bit embedded core
family. https://github.com/aeste/aemb. Accessed Jan.
2016.

[9] R. Balasubramanian, V. Gangadhar, Z. Guo, C.-H. Ho,
C. Joseph, J. Menon, M. P. Drumond, R. Paul, S. Prasad,
P. Valathol, and K. Sankaralingam. Enabling gpgpu low-level
hardware explorations with miaow: An open-source rtl imple-
mentation of a gpgpu. ACM Trans. Archit. Code Optim., 12(2),
June 2015.

[10] R. R. Balwaik, S. R. Nayak, and A. Jeyakumar. Open-source
32-bit risc soft-core processors. IOSR Journal od VLSI and
Signal Processing, 2(4):43–46, 2013.

[11] L. Barthe, L. Cargnini, P. Benoit, and L. Torres. The secret-
blaze: A configurable and cost-effective open-source soft-core
processor. In Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International Sympo-
sium on, pages 310–313, May 2011.

[12] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The
multikernel: A new os architecture for scalable multicore sys-
tems. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 29–44,
New York, NY, USA, 2009. ACM.

[13] M. Bilzor, T. Huffmire, C. Irvine, and T. Levin. Evaluating
security requirements in a general-purpose processor by com-
bining assertion checkers with code coverage. In Hardware-
Oriented Security and Trust (HOST), 2012 IEEE International
Symposium on, pages 49–54, June 2012.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood. The gem5 simulator. SIGARCH Computer
Architecture News, 39(2):1–7, Aug. 2011.

[15] D. Bittman, D. Capelis, and D. Long. Introducing seaos. In
Information Science and Applications (ICISA), 2014 Interna-
tional Conference on, pages 1–3, May 2014.

[16] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang,
and Z. Zhang. Corey: An operating system for many cores.
In Proceedings of the 8th USENIX Conference on Operating

Systems Design and Implementation, OSDI’08, pages 43–57,
Berkeley, CA, USA, 2008. USENIX Association.

[17] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F.
Kaashoek, R. Morris, and N. Zeldovich. An analysis of
linux scalability to many cores. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010.
USENIX Association.

[18] R. Busseuil, L. Barthe, G. Almeida, L. Ost, F. Bruguier,
G. Sassatelli, P. Benoit, M. Robert, and L. Torres. Open-scale:
A scalable, open-source noc-based mpsoc for design space ex-
ploration. In Reconfigurable Computing and FPGAs (ReCon-
Fig), 2011 Int. Conference on, pages 357–362, Nov 2011.

[19] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y.
Wei, and D. Brooks. Helix: Automatic parallelization of
irregular programs for chip multiprocessing. In Proceedings
of the Tenth International Symposium on Code Generation
and Optimization, CGO ’12, pages 84–93, New York, NY,
USA, 2012. ACM.

[20] D. J. Capelis. Lockbox: Helping computers keep your secrets.
Technical Report UCSC-WASP-15-02, University of Califor-
nia, Santa Cruz, Nov. 2015.

[21] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: explor-
ing the level of abstraction for scalable and accurate parallel
multi-core simulation. In Proceedings of 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 52:1–52:12, New York,
NY, USA, 2011. ACM.

[22] C. Celio, D. A. Patterson, and K. Asanović. The berkeley
out-of-order machine (boom): An industry-competitive, syn-
thesizable, parameterized risc-v processor. Technical Report
UCB/EECS-2015-167, EECS Department, University of Cal-
ifornia, Berkeley, Jun 2015.

[23] D. Champagne and R. Lee. Scalable architectural support for
trusted software. In High Performance Computer Architecture
(HPCA), IEEE 16th Int. Symposium on, pages 1–12, Jan 2010.

[24] Cobham Gaisler AB. Grlib ip core users manual. May 2015.

[25] A. da Silva and S. Sanchez. Leon3 vip: A virtual platform
with fault injection capabilities. In Digital System Design: Ar-
chitectures, Methods and Tools (DSD), 2010 13th Euromicro
Conference on, pages 813–816, Sept 2010.

[26] M. Ebrahimi, L. Chen, H. Asadi, and M. Tahoori. Class: Com-
bined logic and architectural soft error sensitivity analysis. In
Design Automation Conference (ASP-DAC), 2013 18th Asia
and South Pacific, pages 601–607, Jan 2013.

[27] M. Ebrahimi, M. Daneshtalab, and J. Plosila. High perfor-
mance fault-tolerant routing algorithm for noc-based many-
core systems. In Parallel, Distributed and Network-Based
Processing (PDP), 2013 21st Euromicro International Con-
ference on, pages 462–469, Feb 2013.

[28] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger. Dark silicon and the end of multicore scaling.
In Proceedings of the 38th Annual International Symposium
on Computer Architecture, ISCA ’11, pages 365–376, New
York, NY, USA, 2011. ACM.

[29] C. W. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. De-
vadas. Freecursive oram: [nearly] free recursion and integrity
verification for position-based oblivious ram. In Proceedings
of the Twentieth Int. Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’15, pages 103–116, New York, NY, USA, 2015. ACM.

[30] Y. Fu, T. M. Nguyen, and D. Wentzlaff. Coherence domain
restriction on large scale systems. In Proceedings of the 48th
International Symposium on Microarchitecture, MICRO-48,
pages 686–698, New York, NY, USA, 2015. ACM.

[31] Y. Fu and D. Wentzlaff. Prime: A parallel and distributed
simulator for thousand-core chips. In Performance Analysis
of Systems and Software (ISPASS), 2014 IEEE International
Symposium on, pages 116–125, March 2014.

[32] O. Goldreich and R. Ostrovsky. Software protection and
simulation on oblivious rams. J. ACM, 43(3):431–473, May
1996.

[33] M.-Y. Hsieh. A scalable simulation framework for evaluating
thermal management techniques and the lifetime reliability of
multithreaded multicore systems. In Int. Green Computing
Conference and Workshops, pages 1–6, July 2011.

[34] HT-Lab. Cpu86: 8088 fpga ip core. http://ht-lab.com/

freecores/cpu8086/cpu86.html. Accessed Jan. 2016.

[35] H. Hua, C. Mineo, K. Schoenfliess, A. Sule, S. Melamed,
R. Jenkal, and W. Davis. Exploring compromises among
timing, power and temperature in three-dimensional inte-
grated circuits. In Design Automation Conference, 2006 43rd
ACM/IEEE, pages 997–1002, 2006.

[36] T. Instruments. Msp430x1xx family users guide, 2006.

[37] R. Jia, C. Lin, Z. Guo, R. Chen, F. Wang, T. Gao, and H. Yang.
A survey of open source processors for fpgas. In Field Pro-
grammable Logic and Applications (FPL), 2014 24th Interna-
tional Conference on, pages 1–6, Sept 2014.

[38] O. Khalid, C. Rolfes, and A. Ibing. On implementing trusted
boot for embedded systems. In Hardware-Oriented Security
and Trust, IEEE Int. Symposium on, pages 75–80, June 2013.

[39] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and
Y. Zhou. Designing and implementing malicious hardware.
LEET, 8:1–8, 2008.

[40] M. Kochte, M. Schaal, H. Wunderlich, and C. Zoellin. Effi-
cient fault simulation on many-core processors. In ACM/IEEE
Design Automation Conference, pages 380–385, June 2010.

[41] R. Kumar, K. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-isa heterogeneous multi-core architec-
tures: The potential for processor power reduction. In Mi-
croarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM Int. Symposium on, pages 81–92. IEEE, 2003.

[42] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Sto-
janovic, and K. Asanović. A 45nm 1.3ghz 16.7 double-
precision gflops/w risc-v processor with vector accelerators.
In European Solid State Circuits Conference (ESSCIRC), ES-
SCIRC 2014 - 40th, pages 199–202, Sept 2014.

[43] S. Li, J. H. Ahn, R. Strong, J. Brockman, D. Tullsen, and
N. Jouppi. Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architec-

tures. In Microarchitecture, 2009. MICRO-42. 42nd Annual
IEEE/ACM Int. Symposium on, pages 469–480, Dec 2009.

[44] J. Lu and B. Taskin. From rtl to gdsii: An asic design course
development using synopsys R© university program. In Mi-
croelectronic Systems Education (MSE), 2011 IEEE Interna-
tional Conference on, pages 72–75, June 2011.

[45] A. J. Massa. Embedded software development with eCos.
Prentice Hall Professional, 2003.

[46] M. McKeown, J. Balkind, and D. Wentzlaff. Execution draft-
ing: Energy efficiency through computation deduplication. In
Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, pages 432–444, Dec 2014.

[47] B. L. Meakin. Multicore system design with xum: The exten-
sible utah multicore project. Master’s thesis, The University
of Utah, 2010.

[48] N. Mehdizadeh, M. Shokrolah-Shirazi, and S. Miremadi. An-
alyzing fault effects in the 32-bit openrisc 1200 microproces-
sor. In Availability, Reliability and Security. ARES 08. Third
International Conference on, pages 648–652, March 2008.

[49] B. Miller, D. Brasili, T. Kiszely, R. Kuhn, R. Mehrotra,
M. Salvi, M. Kulkarni, A. Varadharajan, S.-H. Yin, W. Lin,
A. Hughes, B. Stysiack, V. Kandadi, I. Pragaspathi, D. Hart-
man, D. Carlson, V. Yalala, T. Xanthopoulos, S. Meninger,
E. Crain, M. Spaeth, A. Aina, S. Balasubramanian, J. Vulih,
P. Tiwary, D. Lin, R. Kessler, B. Fishbein, and A. Jain. A
32-core risc microprocessor with network accelerators, power
management and testability features. In IEEE Int. Solid-State
Circuits Conf. Digest of Tech. Papers, pages 58–60, Feb 2012.

[50] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: a distributed
parallel simulator for multicores. In IEEE 16th Int. Symp. on
High Performance Computer Architecture, pages 1–12, 2010.

[51] S. T. S. Ngiap. Aemb 32-bit microprocessor core datasheet,
November 2007.

[52] J. Olivares, J. Palomares, J. Soto, and J. Gámez. Teaching mi-
croprocessors design using fpgas. In Education Engineering
(EDUCON), 2010 IEEE, pages 1189–1193, April 2010.

[53] OpenCores. Altor32 - alternative lightweight openrisc cpu.
http://opencores.org/project,altor32. Accessed
Jan. 2016.

[54] OpenCores. Amber arm-compatible core. http://

opencores.org/project,amber. Accessed Jan. 2016.

[55] OpenCores. Openmsp430. http://opencores.org/

project,openmsp430. Accessed Jan. 2016.

[56] OpenCores. Or1200 openrisc processor. http:

//opencores.org/or1k/OR1200_OpenRISC_Processor.
Accessed Jan. 2016.

[57] OpenCores. pAVR. http://opencores.org/project,

pavr. Accessed Jan. 2016.

[58] Oracle. OpenSPARC T1. http://www.

oracle.com/technetwork/systems/opensparc/

opensparc-t1-page-1444609.html.

[59] P. M. Ortego and P. Sack. Sesc: Superescalar simulator. In
17th Euro micro conf. on real time systems, pages 1–4, 2004.

[60] I. Parulkar, A. Wood, J. C. Hoe, B. Falsafi, S. V. Adve, J. Tor-
rellas, and S. Mitra. Opensparc: An open platform for hard-
ware reliability experimentation. In Fourth Workshop on Sili-
con Errors in Logic-System Effects (SELSE). Citeseer, 2008.

[61] A. Pellegrini, R. Smolinski, L. Chen, X. Fu, S. Hari, J. Jiang,
S. Adve, T. Austin, and V. Bertacco. Crashtest’ing swat:
Accurate, gate-level evaluation of symptom-based resiliency
solutions. In Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, pages 1106–1109, March 2012.

[62] C. D. Polychronopoulos. Parallel programming and compil-
ers, volume 59. Springer Science & Business Media, 2012.

[63] PyHP. PyHP Official Home Page. http://pyhp.

sourceforge.net.

[64] A. Raman, A. Zaks, J. W. Lee, and D. I. August. Parcae:
A system for flexible parallel execution. In Proc. of the
ACM SIGPLAN Conf. on Programming Language Design and
Implementation, pages 133–144, New York, NY, USA, 2012.

[65] Aeroflex Gaisler AB. Sparc v8 32-bit processor leon3/leon3-ft
companioncore data sheet, March 2010.

[66] UC Berkeley Architecture Research. The berkeley out-of-
order risc-v processor. https://github.com/ucb-bar/

riscv-boom. Accessed Jan. 2016.

[67] UC Berkeley Architecture Research. Rocket core. https:

//github.com/ucb-bar/rocket. Accessed Jan. 2016.

[68] S. RISC. Simply risc s1 core. http://www.srisc.com/?s1.
Accessed Jan. 2016.

[69] P. Schaumont and I. Verbauwhede. Thumbpod puts security
under your thumb. Xilinx R© Xcell J, 2003.

[70] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Es-
pasa, E. Grochowski, T. Juan, and P. Hanrahan. Larrabee: A
many-core x86 architecture for visual computing. ACM Trans.
Graph., 27(3):18:1–18:15, Aug. 2008.

[71] L. Semiconductor. Latticemico32 open, free 32-bit soft pro-
cessor. http://www.latticesemi.com/en/Products/

DesignSoftwareAndIP/IntellectualProperty/

IPCore/IPCores02/LatticeMico32.aspx. Accessed
Jan. 2016.

[72] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks. Aladdin:
A pre-rtl, power-performance accelerator simulator enabling
large design space exploration of customized architectures. In
The 41st Annual Int. Symposium on Computer Architecture,
pages 97–108, Piscataway, NJ, USA, 2014. IEEE Press.

[73] S. Shengfeng, Z. Dexue, and Y. Guoping. Soc verification
platform based on aemb softcore processor [j]. Microcon-
trollers & Embedded Systems, 4:016, 2010.

[74] J. C. Smolens, B. T. Gold, J. C. Hoe, B. Falsafi, and K. Mai.
Detecting emerging wearout faults. In Proc. of Workshop on
SELSE, 2007.

[75] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu,
and S. Devadas. Path oram: An extremely simple oblivious
ram protocol. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’13, pages 299–310, New York, NY, USA, 2013. ACM.

[76] A. Strelzoff. Teaching computer architecture with fpga soft
processors. In ASEE Southeast Section Conference, 2007.

[77] J. Szefer and R. Lee. Architectural support for hypervisor-
secure virtualization. In Proceedings of the Seventeenth Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS XVII,
pages 437–450, New York, NY, USA, 2012. ACM.

[78] J. Szefer, W. Zhang, Y.-Y. Chen, D. Champagne, K. Chan,
W. Li, R. Cheung, and R. Lee. Rapid single-chip secure
processor prototyping on the opensparc fpga platform. In
Rapid System Prototyping (RSP), 2011 22nd IEEE Interna-
tional Symposium on, pages 38–44, May 2011.

[79] J. Tandon. The openrisc processor: open hardware and linux.
Linux Journal, 2011(212):6, 2011.

[80] J. Tong, I. Anderson, and M. Khalid. Soft-core processors
for embedded systems. In Microelectronics, 2006. ICM ’06.
International Conference on, pages 170–173, Dec 2006.

[81] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli.
Multi2sim: A simulation framework for cpu-gpu computing.
In Proceedings of the 21st International Conference on Par-
allel Architectures and Compilation Techniques, PACT ’12,
pages 335–344, New York, NY, USA, 2012. ACM.

[82] S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, A. Singh, T. Jacob, S. Jain, et al. An
80-tile sub-100-w teraflops processor in 65-nm cmos. Solid-
State Circuits, IEEE Journal of, 43(1):29–41, 2008.

[83] R. N. M. Watson, J. Woodruff, D. Chisnall, B. Davis,
W. Koszek, A. T. Markettos, S. W. Moore, S. J. Murdoch,
P. G. Neumann, R. Norton, and M. Roe. Bluespec Extensible
RISC Implementation: BERI Hardware reference. Technical
Report UCAM-CL-TR-868, University of Cambridge, Com-
puter Laboratory, Apr. 2015.

[84] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown III, and
A. Agarwal. On-chip interconnection architecture of the Tile
Processor. IEEE Micro, 27(5):15–31, Sept. 2007.

[85] D. Wentzlaff, C. Gruenwald, III, N. Beckmann,
K. Modzelewski, A. Belay, L. Youseff, J. Miller, and
A. Agarwal. An operating system for multicore and clouds:
Mechanisms and implementation. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10, pages
3–14, New York, NY, USA, 2010. ACM.

[86] D. Wentzlaff, C. J. Jackson, P. Griffin, and A. Agarwal. Con-
figurable fine-grain protection for multicore processor virtual-
ization. In Proceedings of the Annual Int. Symp. on Computer
Architecture, pages 464–475, Washington, DC, USA, 2012.

[87] D. H. Woo and H.-H. S. Lee. Extending amdahl’s law for
energy-efficient computing in the many-core era. Computer,
(12):24–31, 2008.

[88] D. Yeh, L.-S. Peh, S. Borkar, J. Darringer, A. Agarwal, and
W.-M. Hwu. Thousand-core chips [roundtable]. Design Test
of Computers, IEEE, 25(3):272–278, May 2008.

[89] M. Zandrahimi, H. Zarandi, and A. Rohani. An analysis of
fault effects and propagations in zpu: The world’s smallest 32
bit cpu. In Quality Electronic Design (ASQED), 2010 2nd
Asia Symp. on, pages 308–313, Aug 2010.

